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Notice to Reader

1. These notes have been created based on all the content covered in CS 246 lectures in
the Fall 2023 term. These notes cover everything that was covered in lectures, as
well as any more information that was deemed important.

2. For all the code examples provided, you can assume that all the required library
imports and namespace setting have been done already unless mentioned otherwise.
Any other code that can be assumed to have been run will also be mentioned before
each example.

3. The content in these notes assumes prior knowledge in C and basic Data Structures
and Algorithms, which was covered in CS 136.

4. Exam review resources are also available in this version of the notes, and start after
the regular course notes end.

5. All content in this document is ©Amol Venkataraman, 2023. You are free to share
these notes with other students, but you are NOT allowed to use any portion of these
notes for commercial uses without obtaining prior permission.

6. If you discover any errors, please inform the author using the contact information
provided on the first page.

7. These course notes contain all the content covered throughout the term.

8. This version of the notes contains 115 pages (including title and notice pages).

I hope you enjoyed these notes throughout the term, and I will you the best of luck on
all your final exams! :)

You can access the latest version of these notes at: https://app.amolven.me/static/
Notes/CS_246_CN.pdf.

https://app.amolven.me/static/Notes/CS_246_CN.pdf
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Introduction

In CS 136, the C99 standard was used. In this course, the C++20 standard is used.

C++ is 100% backwards-compatible with C, and every C program is also a valid C++ program. However, many
aspects of C syntax is discouraged in C, since C++ has better functions, tools, and syntax, that faster and/or
safer and/or more convenient.

Comparison between C and C++

Hello world in C99:

#include <stdio.h> 
 
void main() { 
    printf("Hello, World!\n"); 
} 

Hello world in C++20

import <iostream>; // New C++20 syntax to simplify imports
using namespace std; // Adding this line means you don't have to prepend 
commands with std:: 
 
int main() { // main function has to return int 
    cout << "Hello, World!" << endl; // C++ syntax for printing 
    return 0; // Default return value of 0 
} 

The import statement speeds up compile time by making all libraries get compiled once manually and then
cached.

endl is similar to "\n" from C in that it prints out a new line, but it also clears the output buffer, forcing
everything that was printed to get displayed on the screen immediately if it hasn't already.

How to run C++ programs

Compiling and running the C++20 program. This method requires the setup from A0 to be done first.

// Compile system headers. This method reduces unnecessary resource waste 
from recompiling 
g++20h iostream 



 
// Run the program 
g++20m hello.cc [-o myprogram] // Not using -o will make the output default 
to a.out 

C++ imports without C++20 modules

#include <iostream> // Instead of the import syntax. Slower but more stable

g++20i hello.cc [-o myprogram] // Not using -o will make the output default 
to a.out 

Input / Output

Recall that there are 3 different streams, stdin, stdout, and stderr.

There are different functions to interact with each stream.

cout << x; will print out the contents of x to the stdout stream.
cin >> x; will read from the stdin stream into the variable x.
cerr << x; will print out the contents of x to the stderr stream.

Since C++ is 100% backwards compatible with C, we can use all the C functions, like printf, scanf, "\0", etc.
in C++. However, it is strongly recommended to only use the C++ functions whenever possible since they are
usually faster, more efficient, easier to use, and safer.

Example: Reading 2 ints, adding them up, and printing it out again.

import <iostream>; 
using namespace std; 
 
int main() { 
    int x, y; // Declaring 2 ints 
    cin >> x >> y; // Read into x and then into y 
    cout << x + y << endl; // cout can directly print integers without 
formatters 
    // A return statement is optional. main defaults to returning 0 
} 

Operators:

cin >> x; - "get from"



cout << x; - "put to" The arrows point in the direction of information flow. For example, in cout, the
arrows point from x and to cout (which can be thought of as the stdout stream)

How could this go wrong? There are 3 potential errors:

1. User gives us non-integer input.
2. User supplies EOF (via Ctrl + D).
3. What if the integers are too big / small?

In order to make it possible to check if any of these has occurred, cin contains a fail bit and an EOF bit.

Fail bit: cin.fail() - Set to true when the read fails (incorrect type or out of bounds)
EOF bit: cin.eof() - Set to true when the EOF is reached (program runs out of input)

By using implicit conversion to bool, we can check for either an input failure or EOF:

if (cin) 

The above statement will return true if there are no errors, and returns false if either Fail or EOF bits are true.

It is important to note that once Fail bit has been set as true, it will remain that way until the program finishes
executing. The only way to reset it is to manually execute the following statement:

cin.clear(); 

Example: Read integers from stdin and print them out until failure.

// V1 - Basic statements
import <iostream>; 
using namespace std; 
 
int main() { 
    int i; 
    while (true) { // Iterate forever 
        cin >> i; // Read input 
        if (cin.fail()) break; // Exit out of the loop if there is an error 
        cout << i << endl; // Print out the input that was read 
    } 
} 

// V2 - Using implicit conversion to bool
import <iostream>; 



using namespace std; 
 
int main() { 
    int i; 
    while (true) { 
        cin >> i; 
        if (cin) break; // Implicit conversion 
        cout << i << endl; 
    } 
} 

// V3 - Simplification
import <iostream>; 
using namespace std; 
 
int main() { 
    int i; 
    while (true) { 
        if (!(cin >> i)) break; // Thus is possible since cin >> i returns 
cin 
        cout << i << endl; 
    } 
} 

// V4 - Shortest, Best
import <iostream>; 
using namespace std; 
 
int main() { 
    int i; 
    while (cin >> i) { // Keep iterating as long as there is valid input 
        cout << i << endl; 
    } 
} 

Example: Read and print all integers from stdin, skipping invalid input.

import <iostream>; 
using namespace std; 
 
int main() { 
    int i; 
    while (true) { 



        if (cin >> i) cout << i << endl; // Read input and print it out if it 
is successful 
        else { 
            if (cin.eof()) break; // Break out of the loop when EOF is 
reached 
            cin.clear(); // Clear the failure bit 
            cin.ignore(); // Discard the current (invalid) character being 
read and go to the next position 
        } 
    } 
} 

C++ Features

Overloading

In C, the << and >> are bit shift operators.

In C++, the functionality of these operators depends on the context that they are used in.

x >> 3: Has an int on the LHS, and thus functions as the bit shift operator.
cin >> x: Has cin on the LHS, and thus reads input from stdin to x.

This is known as overloading.

Another effect of overloading is that the return value can also be customized. For example, cout << x;
returns cout. This might seem weird at first, but it means that we can simplify our print statements. For
example:

The code below

cout << "The answer is: "; 
cout << x; 
cout << endl; 

Can be simplified to:

cout << "The answer is: " << x << endl; 

The statement is read from the left to the right, and cout << "The answer is: "; executes first. That
would then return cout, which would replace the protion of the statement that was just executed. The
statement would then become cout << x << endl;. Similarly, the variable x gets printed first, and finally,
endl.



Strings

In C, strings are sequences of characters terminated by \0. C strings offer very low level control, but come with
many disadvantages:

We need to manage out own memory.
We need to save space for a null terminator (\0).
We should make sure that we don't overwrite the null terminator.

In C++, there is a string type, std::string. It is found in the library <string>. It has numerous
advantages.

You no longer need to manage your own memory.
No need to worry about allocating space for \0.

The syntax to declare a C++ string is:

string s = "Hello"; // "Hello" is a string literal from C, but the C++ 
compiler converts it into a C++ string

Since C++ supports overloading (changing behaviour of functions based on their input values), many operations
can be applied to C++ strings:

Comparison: s1 == s2, s1 != s2
Sorting: (In lexicographical order) s1 < s2 or s1 > s2
Length: s.length() [This function runs with constant O(1) time since the length is cached]
Concatenation: s1 + s2, s3 += s2
Accessing characters: s[1], s[1], s[2] [These represent the individual characters on the string]

Reading and printing strings:

import <iostream>; 
inport <string>; 
using namespace std; 
 
int main() { 
    string s; // Declare a string variable 
    cin >> s; // Read input from stdin into s 
    cout << s << endl; // Print out contents of s 
} 

The cin statement reads one word from stdin when it is supposed to read to a string. A word is a sequence
of characters that are not separated by a whitespace.

If we want to read whitespaces, we need to use the getline command. The syntax for it is:



getline(cin, s); 

Streams and Abstraction

Both cin and cout are examples of streams.

cin is of type std::istream
cout is of type std::ostream

These are examples of abstractions. The streams act as "interfaces" to perform different functionality.

istream provides >> as an interface to "read from"
ostream provides << as an interface to "write to"

There are different extensions of this basic stream functionality with different use cases. For example, for files:

ifstream: reads from a file
ofstream: writes / prints to a file

The ifstream and ofstream are available in the <fstream> library.

Anything that can be done with an istream / ostream can be done with an ifstream / ofstream

Example: File access in C - Program to open a file and print out it's contents.

#include <stdio.h>
#include <stdlib.h> 
 
int main() { 
    char s[256]; // We have to set an arbitrary maximum line length 
    FILE *f = fopen("file.txt", "r"); // We need to open the file before 
reading 
    while (true) { 
        fscanf(f, "%255s", &s); // We need to add complicated formatters 
        if (feof(f)) break; 
        printf("%s\n", s); 
    } 
    fclose(d); // We need to remember to close the file before the program 
ends 
} 

This seems unnecessarily complicated for what it does. C++ on the other hand, has a much simpler solution.

import <iostream>; 
import <fstream>; 



import <string>; 
using namespace std; 
 
int main() { 
    string s; 
    ifstream f{"file.txt"}; // File opening and reading is handled for us 
    while (f >> s) cout << s << endl; // We use the exact same systex as 
reading from stdin 
} // The file is closed automatically when main ends

This syntax is much easier to both write and understand.

Note the initialization syntax: ifstream f{"file.txt"}. This is valid syntax for initializing any C++ variable.
For example: int i{5}.

Another application of istream / ostream abstraction is strings. These functions can be found in the library
<sstream>

std::ostringstream: Allows us to print to a string (with formatting).
std::istringstream: Allows us to "read from" a string.

Example: Convert an int to a string.

string intToString(int n) { 
    ostringstream oss; 
    oss << n; 
    return oss.str(); 
} 

Example: Revisit printing all valid integer input from stdin.

import <iostream>; 
import <sstream>; 
import <string>; 
using namespace std; 
 
int main() { 
    string s; 
    while (cin >> s) { 
        int i; 
        // The variable iss is being declared inside the if statement 
        if (istringstream iss{s}; iss >> i) cout << i << endl; // The if 
statement will return true when iss could convert to i without any issues 
    } 
} 



Note that this example has slightly different behaviour than the previous example. If provided with "ab12cd"
as input:

The original version would print 12.
This new version would not print anything.

Another thing to note is that there is no need to clear iss's fail bits since it is reinitialized with each iteration of
the loop.

Command Line Arguments

These are provided at runtimr and are used to customize the program's behaviour. For example:

./program abc 123 

They can be accessed in both C and C++ in the following way:

int main(int argc, char* argv[])

Here, argc represents the number of arguments given to the program (INCLUDING the program name
itself). argv is an array of strings each of which represents an individual argument.

argv[0] stores the name of the program that is being run. argv[1] to argv[argc - 1] store the command
line arguments given to the program. argv[argc] is refined to be the NULL pointer.

Note: All command-line arguments in argv are C-style strings (char pointers). In order to perform C++
exclusive functions like string comparison, concatenation, and easy modification, they need to be converted to
C++ strings first.

Example: Converting all arguments to C-strings before use.

import <iostream>; 
import <string>; 
using namespace std; 
 
int main(int argc, char **argv) { 
    for (int i = 0; i < argc; i++) { 
        string arg = argv[i]; 
        ... // Do whatever is required with the arguments 
    } 
} 



Example: Sum all integers given on the command line.

import <iostream>; 
import <sstream>; 
import <string>; 
using namespace std; 
 
int main(int argc, char *argv[]) { 
    int total = 0; 
    for (int i = 0; i < argc; i++) { 
        string arg = argv[i]; 
        int n; 
        if (istringstream iss{arg}; iss >> n) total += n; 
    } 
    cout << total << endl; 
} 

Default Function Parameters

Example: A function to print out the contents of a file, with a default parameter

void printFile(string name="file.txt") { 
    ifstream file{name}; 
    string line; 
    while(getline(file, line)) cout << line << endl; 
} 

Running printFile("abc.txt"); will read and print from abc.txt. One the other hand, running
printFile(); will read and print from the default file, which is file.txt.

Optional parameters MUST come last in the function's arguments, in order to avoid any ambiguity.
Furthermore, if a function has more than one default argument, then if any of those arguments need to be
provided a value, then all the arguments (both ones with and without default values) before it also need to be
provided values in order to prevent ambiguity.

Since it is impossible for the function itself to determine whether the memory is unitialized or it has been
initialized to a "strange" value, only the function caller has all the information to be able to set up the default
arguments. Because of this, the caller of a function always sets up it's default arguments, just like it does for
resular arguments.

For similar reasons, default parameters are specified only in the interface (header) file.

Overloading Revisited



Example: A function that can negate both ints amd bools.

int neg(int x) { return -x; } // neg(100) -> -100
bool neg(bool b) { return !b; } // neg(true) -> false

By providing multiple definitions of a function with a different number and/or types of arguments, we can have
different versions of the same function that work with different types of arguments and (potentially) return
different things.

The compiler chooses the correct overload (version of the function) during compile time based on the number
and types of arguments. The compiler can not overload based on return type. It is also important to note that
there can only be one version of a function with a certain type of arguments (for example, there can only be
one version of a function that accepts two ints, regardless of the function contents or return type).

This has already been done with default C++ operators, like ==, <<, >>, and +=.

Structs

Similar to C, C++ has structures, that allows for storing different types of data together as one unit. While the C
syntax for structures still works with C++, there are some changes that make using structures more convenient.

Example: Structure in C++ for the node of a linked list.

struct Node { 
    int data; 
    Node *next; // In C++, we do not have to prepend with struct 
}; // Remember to end with a semicolon

Constants

Constants have values that can not be changed during the course of the program's execution. The syntax to
declare a constant is:

const int MAX_GRADE = 100; 

Any changes to MAX_GRADE will result in a compilation error.

We can do something similar for structures.

const Node{5, nullptr}; 



Here, neither the data field, nor the next field can be changed.

NULL pointers

In C, the null pointer is written as NULL or 0.

In many C libraries, there is actually a line like

#define NULL 0

In C++, the term nullptr is used instead in order to prevent ambiguity with overloaded functions. For
example

void f(Node *p); 
void f(int x); 

Using NULL would be converted to 0, and then it is not possible to determine which version of the function
needs to be called. On the other hand, the nullptr term is automatically converted to any pointer type, and
does not cause any any similar ambiguity.

References

Why does getline(cin, s) edit s, even though it is not given a pointer? What about cin >> x?

C++ has another pointer-like type called a reference. Example: Declaring a reference.

int x = 5; 
int& z = x; // z is an "lvalue reference" to x

After running the above code, performing most things to z will have the same result as doing the same thing to
x.

Both x and z refer to the same thing. z is an alias for x.
Any changes in z are also reflected in x.
The way references are implemented depends on the compiler:

Sometimes (usually in simple cases), the variable name is simply replaced.
Other times, a a hidden pointer is used that is automotically dereferenced.

References are like constant pointers with automatic dereferencing.
References use a similar syntax to the "address of" operator, but the exact meaning depends on the
context:

If the & appears in a type, then is is a reference. Ex. void f(int &n);



If the & is part of an expression, then is is the address of operator. Ex. g(&x);

Lvalue vs Rvalue: An Lvalue is anything that always has a defined region of memory where it is stored, like a
variable or a constnt. On the other hand, an Rvalue is something that does not always have a defined region of
memory. For example, when running func(5), the value 5 is an Rvalue since it is not stored on a defined
region of memory.

What you cannot do with references:

Cannot be left unitialized
int& z; Causes compilation error
Cannot assign a temporary value (Rvalue) to an Lvalue reference
int& z = 5; Causes compilation error
Similarly, Lvalue references can only be initialized to Lvalues, like variables
int& z = x + y; or int& z = f(); will cause a compilation error since both values on the right are
temporaries with no long-term memory resolution.
Cannot create a pointer to a reference
int*& x = ...; This is allowed, since it is a reference to a pointer
int&* x = ...; This is not allowed, since it is a pointer to a reference
References are not always stored in memory, so pointers to references aren't allowed.
Cannot create a reference of a reference
int&& z = x; is not allowed
There are 2 reasons for this not being allowed. One is that it is completely pointless and not useful. The
other reason is that the && syntax is reserved for something different (Rvalue references).
Cannot create an array of references
int& arr[3] = {x, y, z}; will cause a compilation error
Just like for some of the other prohibited actions, this is not possible since references are not always
stored in memory.

References are most useful for function arguments.

Examples: A function using a reference to get it's input value.

void inc(int& x) { ++x; } // The function takes a reference of the variable 
passed in and stores it in x 
 
int x = 5; 
inc(x); // Changes will be reflected here directly
// There is no need to overwrite the variable value or to use pointers

getline(cin, x) and cin >> x work because s and x are passed by reference.

Methods for passing parameters

Suppose we have need to pass in a lot of data into a function, in the following form:



struct ReallyBig { ... }; 

There are 4 main ways to do this:

// Pass by value - very simple, but extremely slow, since a copy of the 
variable needs to be made
void f(ReallyBig rb); 
 
// Pass by pointer - Fast, no copy is made, but can be confusing, and changes 
are reflected
void g(ReallyBig* rb); 
 
// Pass by reference - Fast (similar to speed of a pointer), no copy is made, 
and changes are reflected
void h(ReallyBig& rb); 
 
// Pass by const reference - Fast, no copies, no changes, easy to reason 
about
void i(const ReallyBig& rb); 

How to take in args when designing a function:

Go to: Constant Lvalue reference - Fast, easy to reason about
If changes should be reflected: Pass by reference
Pass-by-pointer: Changes reflected, and ability to pass nullptr.
Pass-by-value: Useful 2 situations

Small arguments, < 8 bytes
Need temporary version of the argument to work with

Constant Lvalue references may also bind to temporaries

void g(const int& y); 
 
g(z); // Works 
g(5); // Also works. Compiler will reserve a temporary memory location for 5

All streams have a similar signature (stream << out OR stream >> in), and use references because streams have
copying disabled in order to prevent ambiguity.

Dynamic Memory

Recall, Dynamic memory in C:



int* arr = malloc(n * sizeof(int)); // Allocates memory 
... // Code that uses arr
free(arr); // Returns memory back to the OS

This works, but has some issues, namely:

It is possible to store the wrong type of value.
Calculating the size of the structure and passing it in is not very elegant miscalculating can cause errors.

Dynamic memory in C++:

Node* p = new Node{5, nullptr}; // Allocated memory 
... // Code that uses p
delete p // Returns memory back to the OS

All local variables are on the stack. Stack-allocated variables are deallocated when they go out of scope.

Memory allocated with new is on the heap. Heap memory persists untill delete is called. Failure to delete will
cause memory leaks, which could result in the program crashing.

Example: C++ arrays on the heap

int* arr = new int[10]; 
... 
delete[] arr; 

C++ operators new and delete are incompatible with the C operators malloc and free. Memory allocated
with new needs to be freed with delete, and memory allocated with malloc needs to be freed with free.

C++ doesn't have an equivalent operator for realloc. The data stored in the array needs to be manually
copied over.

Always pair new with delete and new[] with delete[]. Mixing and matching causes undefined behaviour.

Methods for returning values

There are many different ways to return values in C++, which all vary in many ways.

// Return-by-value
Node getMeAMode(int x) { 
    Node n{x, nullptr}; 
    return n; // n is copied from getMeANode's stack frame to caller's frame 



} // This works, but copying is slow 
 
// Return-by-pointer (broken)
Node* getMeANodePtr(int x) { // WARNING: Does not work 
    Node n{n, nullptr}; 
    return n; // Crashes at runtime if caller uses the return value 
} // n is destroyed when the function ends, returning a pointer to 
inaccessible memory 
 
// Return-by-pointer (working)
Node* getMeANodePtr(int x) { // Memory lives past the end of the function 
call 
    Node *p = new Node{x, nullptr}; 
    return p; 
} // Fast, works, user much delete the pointer manually 
 
// Return-by-reference (broken)
Node& getMeANodeRef(int x) { 
    Node n{x, nullptr}; 
    return n; // Dangling reference, n is destroyed on return 
} 

Return-by-reference is rare, and is only used when returning non-local values, like with cin and cout.

Advise: Use return-by-value for most scenarios. Usually, the compiler can optimize the copy away from the
return (elision, move semantics).

Operator Overloading

Recall from earlier how the << and >> operators were overloaded to be used for input/output. We can actually
overload any operator to have customized behaviour for certain input types. Most notably, this includes custom
objects (structs and classes).

The template for a function that overloads the operator op is:

<return_type> operator<op>(...<input(s)>...) { 
    ... // Perform computation 
    return <return_value> 
} 

Let's consider a custom structure

struct vec { 
    int x, y; 
}; 



 
vec x{1, 2}; 
vec y{3, 4}; 
vec z = x + y; // We want the plus sign to do addition 
 
vec w = 2 * x; // We want multiplication to work as expected 
vec v = x * 2; 

This can be achieved by overloading the plus sign and asterisk operator

// Operloading addition 
vec operator+(const vec& v1, const vec& v2) { 
    vec r{v1.x + v2.x, v1.y + v2.y}; 
    return r; 
} 
 
// Operloading multiplication 
vec operator*(int k, const vec& v) { 
    return {k * v.x, k * v.y} // Not necessary to save data to variable since 
it is automatically assumed based on the return type 
} 
 
// Overloading multiplication again in order to make the other type of 
multiplication work 
vec operator*(const vec& v, int k) { 
    return k * v; // Call the multiplication operator we defined earlier 
} 

Example: Overloading >> and << operators

struct Grade { 
    int n; 
}; 
 
ostream& operator<<(ostream& out, const grade& g) { 
    return out << g.n << "%"; 
} // This code will work not just for cout but also for writing to files 
 
istream& operator>>(istream& in, grade& g) { 
    in >> g.n; 
    if (g.n < 0) g.n = 0; 
    if (g.n > 100) g.n = 100; 
    return in; 
} // Similarly, this code also works for files



Separate compilation

Speed up compilation by only compiling what is necessary.

Interface files (.h) - Provide declarations for functions Implementation files (.c, .cc) - Provide definitions for
functions writtenE

Interface file (vec.cc) This is new syntax for C++20 and is NOT backwards-compatible with #include.

export module vec; // This tells the compiler that this file is an interface 
file 
 
export struct vec { // Perfixed with "export" makes it availabe to clients 
(importers) 
    int x, y; 
} 
export vec operator+(const vc& v1, const vec& v2); 

Client code (main.cc)

import vec; // Import the module 
 
int main() { 
    vec v{1, 2}; 
    vec w = v + v; 
} 

Implementation file (vec-impl.cc)

module vec; 
 
vec operator+(const vec& v1, const vec& v2) { 
    return {v1.x + v2.x, v1.y, v2.y}; 
} 

Importing

We generate an object file (.o) from a source (.cc) file using the following command:

g++20m file.cc -c # Produces file.o



Files are compiled in dependency order:

1. Interface files first
2. Implementation / client code second

The order for the previous example would be:

1. vec.cc
2. vec-impl.cc
3. main.cc

The command to link all the object files and produce an executable is:

g++20m vec.o vec-impl.o main.o -o program 

Now, the executable can be run:

./program 

There are no tools like make currently available to automate separate compilation for C++20 imports. Instead,
we first run the command to generate object files twice. For the first time, some will work correctly while others
will fail due to dependency issues. For the second time, all the dependencies should've been compiled by the
previous command, and so any remaining files will compile. After this, the files can be linked and an executable
can be generated. If we only change one file, then we just need to recompile that file and relink.

Classes

Classes are the main difference between C and C++

At it's simplest form, a class is a struct with functions inside it.

Example: An example of a class.

// student.cc
export struct Student { 
    int assns, mt, final; 
    float grade(); // Function inside struct 
}; 
 
// student-impl.cc
float Student::grade( { 
    return 0.4 * assns + 0.2 * mt + 0.4 * final; 
}) 
 



// main.cc 
Student s{60 70, 80}; 
cout << s.grade << endl; 

The implementation of class function can be written in either the interface (inside the structure) or
implementation file (like a regular function). However, writing it in the implementation file is encouraged since
it is considered better syntax.

Student is a class. (there is a class keyword, but that isn't used here and will be discussed later)

s is an object - a particular instance of a class.

:: - "scope resolution operator". One use is to define a function inside a class. It is also used to provide the
namespace.

Student::grade is a "member function" or "method".

When we call a member function (like s.grade()), the variables in the function (assns, mt, and final) are
bound to the variables in the class with corresponding names (s.assns, s.mt, and s.final).

The compiler accesses the correct fields using an implicit parameter called this. It is a pointer to the object
that the method was called on.

Inside the function, <var> and this -> <var> mean the same thing, where <var> is any field in the
class/struct.

Big Five

Initializing Objects

To control how objects are created, write a constructor (ctor). Constructors have no return type and have the
same name as the class/struct.

Exmaple: A class that has a constructor.

// student.cc
export struct Student { 
    int assns, mt, final; 
    float grade(); 
    Student(int assns, int mt, int final); 
} 
 
// student-impl.cc 
Student::Student(int assns, int mt, int final) { 
    this -> assns = assns; 
    this -> mt = mt; 



    this -> final = final; 
    // Note that "this" is used here becuse the arguments and struct fields 
have the same names, and we need to disambiguate the field and argument. 
} 
 
// main.cc 
Student s{60, 70, 80}; 
Student s = Student{60, 70, 80}; // This is equivalent to the line of code 
abve 
Student *p = new Student{60, 70, 80}; // This represents heap initialization

If you do not use a field, the compiler will give field-by-field initialization like in C. Meanwhile, if you write your
own constructor, then the compiler will use it instead of field-by-field initialization.

The major benefit of constructors is that they are functions and can thus be customized as such:

Argument bounds checking
Overloading
Default parameters

Any constructor that can be called with 0 arguments is a "default constructor". This can be either the
constructor has no arguments or because it has default parameters. If we do not write any constructors, then
the compiler provides the default constructor.

Compiler-provided default constructor:

Primitive fields (bool, int, char, pointers) - left uninitialized
Object fields (class, struct) - calls the object's default constructor

As soon as you write a constructor, the compiler-provided default constructor goes away. Having no default
constructor and initializing the class without any arguments causes a compilation error.

You can have as many constructors as you need, as long as each one has a unique set of parameters.

Example: Class with default constructor

struct Student [ 
    int assns, mt, final; 
    Student(int assns = 0, int mt = 0, int final = 0) { 
        this -> assns = assns; 
        this -> mt = mt; 
        this -> final = final; 
    } 
] 
 
Student s{30, 60, 90}; // Works same a previous example 
Student newKind{}; // 0-argument ctor invoked 



Student newkid; // 0-argument ctor invoked 
Student toby{30, 60}; // "final" is left as 0 by the ctor

If we do not have a default contructor for a class, that can cause issues with any classes that uses that class
inside it. Remember that this is only an issue if we provide our own custom constructor since the compiler
provides a defalt constructor by default.

struct Basis { 
    vec v1, v2; 
} 
 
Basis b; // This will cause an error, since it calls the default constructor 
for Basis, which calls the (inexistant) default constructor for vec.

Providing a default constructor might seem to work but it actually does not solve the issue

struct Basis { 
    vec v1, v2; // v1 and v2 are already first constructed here 
 
    Basis() { 
        v1 = vec{0, 1}; 
        v2 = vec{1, 0}; 
    } 
} 

This does not work, since v1 and v2 are first constructed before the constructor for Basis is even called, and
thus the same error occurs. This is because of the way C++ creates objects.

NOTE: Whenever we have a usable object in C++, it has been constructed at some point.

Steps for object creation:

1. Enough space is allocted
2. ***Later*** - beyond the scope of current content
3. Fields are initialized - calling default constructor
4. Constructor body runs

We can fix this issue with a Member Initialization List (MIL). The MIL provides default values to initialize the
fields with in step 3 instead of using the default constructor.

struct Basis { 
    vec v1, v2; 
    Basis(): v1{0, 1}, v2{1, 0} { 



        // Constructor body 
    } 
} 

The code v1{0, 1}, v2{1, 0} is the MIL, and is initialized in Step 3.

NOTE: The MIL is provided ONLY in the interface file.

For something like the Basis class, we generally want 2 different constructors:

1. Default Constructor
2. Custom Constructor (user provides all fields)

// Option 1: Providing default values in the default constructor
struct Basis { 
    vec v1, v2; 
    Basis(): v1{0, 1}, v2{1, 0} {} 
    Basis(const vec& v1, const vec& v2): v1{v1}, v2{v2} {} 
}; 
 
// Option 2: Providing default values in declaration
struct Basis { 
    vec v1{1, 0}, v2{0, 1}; 
    Basis() {} 
    Basis(const vec& v1, const vec& v2): v1{v1}, v2{v2} {} 
} 

If there is no MIL provided, then the default values provided during declaration are used. Fields are initialized
based on the order they are declared in inside the class. The order of the fields in the MIL does not matter.

Using the MIL is oftem more efficient than setting values in the constructor body, since for the latter, each
object needs to be default constructed first before it's overwritten is reset to the provided value. This causes an
extra memory write cycle. Because of this, it is recommended to always use an MIL wherever possible.

An MIL must be used for any fields that satisfy any of these conditions:

1. Object fields that are not default constructable.
2. Const fields and reference fields.

It is possible to use an MIL for some fields and to leave the rest default constructable.

Example: Copying objects

struct Student { 
    int assns, mt, final; 
}; 



 
Student s{60, 70, 80}; 
Student r{s}; // We are creating a Student object by giving another Student 
object 
Student t = s; // Same here too

The 2 examples shown above invoke the copy constructor, which creates one object from another of the same
type. By default, the compiler-provided copy constructor copies each field from the original object into the
object being constructed.

The compiler provides the following for all classes:

1. Default constructor (goes away when ANY other constructor is written)
2. Destructor (frees up memory when the object is deleted)
3. Copy constructor
4. Copy assignment constructor
5. Move constructor
6. Move assignment constructor

Example: Copy constructor for Student class

struct Student { 
    int assns, mt, final; 
    Student(const Student& other): assns{other.assns}, mt{other.mt}, 
final{other.final} {} 
}; 

It is important to note that adding ANY constructor (including a copy or more constructor) will remove the
compiler-provided default constructor.

Example: Situation where we can not use the compiler provided copy constructor

// Linked list node
struct Node { 
    int data; 
    Node *next; 
}; 
 
Node *n = new Node{1, new Node{2, new Node{3, nullptr}}}; 
Node p = *n; 
Node *q = new Node{*n}; 
// Note: Node *q = n will simply copy over n's address



In this case, the copy constructor will make a copy of the first node (storing data 1), but will simply set next to
point to the same location that n used to point to. This means that, despite n and p and q being different
objects, after the first node, all 3 point to the same node, which causes data to be shared among the lists.
Updating any node that isn't the first one, and addign or deleting nodes will affect all 3 linked lists at the same
time

This is an example of a shallow copy, where only the first layer is copied over. Instead, we want a deep copy,
where we will end up with 3 identical but still independent lists.

Aside: Ternary operator

// Original, naive approach
cin >> x; 
string a; 
if (x == 0) a = "Zero"; 
else a = "Nonzero"; 
 
// This can be drastically simplified with the ternary comparion operator
cin >> x; 
string a = x == 0 ? "Zero" ? "Nonzero" 
 
// Basic syntax of ternary operator 
<variable> = <condition> ? <true_value> : <false_value> 
 
// Note that even C has this operator

Example: Deep copy operator for linked list node

struct Node { 
    int data; 
    Node *next; 
    Node(const Node& other): data{other.data}, next{other.next ? new 
Node(*other.next) : nullptr} {} 
}; 

The above example will perform a recursive deep copy, and when called on a linked list, will produce another
that is identical but completely separate.

The copy constructor (copy ctor) is called in the following situations:

Constructing one object from another of the same type
Pass-by-value
Return-by-value

There are subtleties to be discussed regarding moving.



Explicit / Implicit Constructors

Once again, let's consider the Node class with a copy constructor:

struct Node { 
    int data; 
    Node *next; 
    Node (int data, Node *next=nullptr): data{data}, next{next} {} 
    Node (const Node& other): data{other.data}, next{other.next ? new 
Node{*other.next} : nullptr} {} 
}; 

We have to use a const reference because simply calling the function with a Node causes the copy constructor
to run, which itself results in the same copy constructor running, and so on, resulting in infinite recursion.

Single arg constructors allow implicit conversions. For example with the Node class shown above, we can
construct it by just providing a single integer. Thus, the following behaviour makes sense:

Node n{4}; 
Node m = 4; 

However, implicit conversions also allow for some unintuitive behaviour:

void f(Node n) { 
    // Do something with n 
} 
 
f(Node{4}); // This makes sense 
f(4); // This does not make sense, but still works

In the example shown above, the constructor for Node is called, which takes in an int. Once a Node is
constructed, it is passed to f.

We have experienced this with C++ string initializations:

string s = "Hello"; 
// A variable of type std::string is being initialized with a const char* 
value.

This is allowed because there is a single argument constructor for std::string that tales in a const char*.



Implicit conversions can be dangerous:

Conversions like int -> Node can be unintuitive can cause confusion.
Conversion is silent with no compiler warning.
There is a high potential for errors.

You can disable implicit conversion by prefixing a constructor with the explicit keyword:

struct Node { 
    int data; 
    Node *next; 
    explicit Node (int data, Node *next=nullptr): data{data}, next{next} {} 
// Explicit constructor 
}; 
 
Node n{4}; // Works 
Node m = 4; // Won't compile 
 
void f(Node n) { 
    // Do something with n 
} 
 
f(Node{4}); // Works 
f(4); // Won't compile

Destructors (dtors)

Called when a stack-allocated object is popped off the stack, or when delete is called on heap allocated
memory.
Special method that runs when an object is destroyed.

The default compiler-provided destructor calls the destructor on all constituent objects, and does nothing to
non-objects.

Steps of C++ object destruction:

1. Destructor body runs
2. Fields are de-initialized (destructor runs for all object fields) [In reverse declaration order]
3. ***Later*** - beyond the scope of current content
4. Space is de-allocated

Reasons for writing custom destructors:

Similar to with constructors, custom classes for data structures, especially those that reference themselves will
need a custom constructor. Let's see why using the Node class as an example:



struct Node { 
    int data; 
    Node *next; 
}; 

Here, next is a Node* or Node pointer. Thus it is not an object and no destructor will run for it. When we call
delete on a node in a linked list, only that node will be deleted, and all the subsequent nodes will remain in
memory but inacccessible, causing a memory leak.

Example: Node class with destructor.

struct Node { 
    ... // Fields and constructors 
    ~Node() { delete next; } // Recursively calls destructor 
    // Name for dtor is ~<name>, and has no args or return type 
}; 

NOTE: Running delete nullptr; is safe and does nothing.

Copy Assignment Operator

Let's consider an example of where we might call this operator using the Student class:

Student s{60, 70, 80}; 
Student r{100, 100, 100}; 
 
Student t = s; // Copy ctor is called 
t = r; // Copy assignment operator is called

The copy assignment operator runs when we assign a value (that already exists) to another of the same type.
The compiler-provided version assigns each field of the object. Similar to constructors and destructors, this
would not work for many custom classes, especially those that have recursive pointers and/or are needed for
data storage.

Example: Copy Assignment Operator for Node class (V1).

struct Node { 
    ... // Fields, constructors, and destructors 
    Node& operator=(const Node& other) { // The Node& return type is for 
chaining (a = b = c) 
        delete next; // We need to delete current objects to avoid memory 
leaks 



        data = other.data; 
        next = other.next ? new Node(*other.next) : nullptr; 
        return *this; // For chaining 
    } 
}; 

The above code works in almost all cases, but will cause a runtime error when you assign a node to itself (n =
n). This is also known as self assignment, and we should not do anything if this happens. So, let's cosider an
updated version.

Example: Copy Assignment Operator for Node class (V2).

struct Node { 
    ... // Fields, constructors, and destructors 
    Node& operator=(const Node& other) { // The Node& return type is for 
chaining (a = b = c) 
        if (this == &other) return *this; // Exit if self assignment occurs 
        data = other.data; 
        delete next; // We need to delete current objects to avoid memory 
leaks 
        next = other.next ? new Node(*other.next) : nullptr; 
        return *this; // For chaining 
    } 
} 

This version is almost perfect, but we can make one more improvement. Currently, we are requesting memory
after we destroy old data. In case memory can't be allocated, this causes next to be deleted. We don't want
anything to happen if memory can't be allocated. Let's consider the final version.

Example: Copy Assignment Operator for Node class (V3 / Final).

struct Node { 
    ... // Fields, constructors, and destructors 
    Node& operator=(const Node& other) { // The Node& return type is for 
chaining (a = b = c) 
        if (this == &other) return *this; // Exit if self assignment occurs 
        Node *tmp = other.next ? new Node(*other.next) : nullptr; 
        // If the above line fails, the function exits without any changes to 
the data 
        delete next; // We need to delete current objects to avoid memory 
leaks 
        data = other.data; 
        next = tmp; 
        return *this; // For chaining 



    } 
}; 

Copy/Swap Idiom

This is another method to implement copy assignment.

There is a function called std::swap in the <utility> library. Running swap(a, b); will swap the values of
a and b.

Exmaple: Copy assignment operator for the Node class using the copy/swap idiom.

struct Node { 
    ... // Fields, constructors, and destructors 
    void swap(Node& other) { 
        std::swap(data, other.data); 
        std::swap(next, other.next); 
        // std::swap is used here insted of swap to avoid ambiguity 
    } 
 
    Node& operator=(const Node& other) { 
        Node tmp{other}; 
        swap(tmp); 
        return *this; 
    } // Dtor and copy ctor need to be defined for this to work 
}; // This method is slightly slower than the previous approach

Move constructor

Recall, the references that we have seen are "lvalue references". They do NOT bind to temporary values.

Node oddsOrEvens() { 
    Node o{1, new Node{3, new Node{5, ... , new Node{99, nullptr}}}}; 
    Node e{2, new Node{4, new Node{6, ... , new Node{100, nullptr}}}}; 
 
    char c; 
    cin >> c; 
    return (c == 'o') ? o : e; 
} 
 
Node l = oddsOrEvens(); // Return by value

When the function exits, either o or e will be copied from oddsOrEvens' stack frame into l. Once the function
goes out of scope, both o and e are deleted.



We just copied 50 Nodes and then deleted the originals. This is a waste of resources. What if we instead just
reused the originals?

This is only allowed if we are certain that nobody else will use the originals.

Example: Different examples of copying / moving data.

Node n{...}; 
Node p{n}; // We must make a copy of n
// n is still defined and we might want to use it later 
 
Node l = oddsOrEvens(); // Temporary value - nobody else can use it!
// We can reuse the data rather than copying and deleting

We need to determine whether the value we are working with is a long lasting value (lvalue) [and perform a
deep copy], or whether we are using a temporary [and reuse the data].

Node&& - rvalue reverence. Can bind to temporary values. Compiler reserves a temporary memory address to
put the value in.

Example: Move constructor for the Node class.

struct Node { 
    ... // Fields, constructors, and destructors 
    Node(Node&& other): data{other.data}, next{other.next} { 
        other.next = nullptr; // Remove other's access to the remaining nodes 
so the destructor does not delete the rest of the linked list when other gets 
destroyed 
    } 
} 

Move Assignment Operator

This is similar to the move constructor, except that it is used when reassigning the value of a variable that has
already been initialized.

struct Node { 
    Node& operator=(Node&& other) { // Move Assignment Operator 
        swap(other); // Assumes the swap function has been defined for Node, 
as shown above for copy/swap idiom 
        return *this; 
    } 
}; 



If other is a temporary (rvalue), the move constructor or move assignment oerator is called instead of copying
resources. If you only write the copy constructor / assignment operator, only these will be used.

Rule of Big 5 (Suggestion)

If you write one of the Big 5 (destructor, copy contructor, copy assign operator, move constructor, move assign
operator): then you should probably write them all.

Do not reinvent the wheel and use compiler-provided versions if possible. The Big 5 is usually necessary only
for classes that manage a resource (memory).

Elision

Let's consider this example:

vec getVec() { return {0, 0}; } 
vec v = getVec(); 

When we run this code, you might expect the constructor and the copy / move constructor to be called, but
only the basic constructor is run.

This occurs due to copy / move elision. Rather than making a vec in getVec() and moving it into main, the
compiler writes the value directly to main itself.

"Compiler is Boss": The compiler can provide this feature even if it changes the program output.

You are not expected to know all the places where elision may occur, just that it is possible.

Features of Objects

Member operators

We previously wrote vec operator+ as a standalone function, but vec operator= was a method. What is
the difference?

struct vec { 
    int x, y; 
    vec operator+(const vec& other) { 
        return {x + other.x, y + other.y}; 
    } 
    vec operator*(int k) { // This function works for v * 5 but not for 5 * v 
        return {x * k, y * k}; 
    } // In order to be able to use 5 * v, we need to write that as a 
standalone function 
}; 



Any function that is defined as a class method automatically takes this as it's first argument. If any functions
need to be written that don't do so, then they need to be written as standalone functions.

For this reason, I/O operators like operator<< and operator>> need to be provided as standalone functions,
since they are not necessarily always run with an instance of the object on the left side of the operator.

Advice: For arithmetic assignments, reuse logic from arithmetic overloads.

vec& operator+=(vec& v1, const vec& v2) { 
    v1.x += v2.x; 
    v1.y += y2.y; 
    return v1; 
} 
 
vec operator+(vec v1, const vec& v2) { // v1 is copied (pass by value) 
    v1 += v2; 
    return v1; 
} 

Some operator overloads must be methods:

operator=
operator[]
operator->
operator()
operatorT (where T is a type)

Arrays of Objects

Let's consider the vec object again:

struct vec { 
    int x, y; 
    vec(int x, int y): x{x}, y{y} {} 
}; // Note that there is no default constructor

What if we wanted to make an array of vec objects:

vec *vp = new vec[15]; 
vec sArraray[10]; 



You might think that the above lines of code will work correctly, but they actually cause a compilation error.
This is because in C++, any object needs to be initialized as it is created. When making an array of vecs, they all
need to be initialized. This is done by running the default constructor for each object in the array. Since there is
no default constructor here, it causes a compilation error.

Solutions - to get an array of objects:

1. Add a default constructor to the object.
This might make sense for the vec object, but might not work with other objects, like for example the
student class but with "name" and "id".

2. If the array is stack allocated, we can provide values during initialization
vec sArray[3] = {{0, 1}, {2, 3}, {4, 5}};
This method works, but has limited use cases where it can be used.

3. Use an array of pointers to objects.
vec **vp = new vec *[15];
Pointers are primitve classes (not objects) and thus don't need constructors. After declaring an array of
pointers, we can initialize them one-by-one.
vp[0] = new vec{0, 1};
vp[1] = new vec{2, 3}; ...
However, when we are done using this array, we need to manually free all the memory, since it is
allocated in the heap.
for (int i = 0; i < 15; ++i) delete vp[i];
delete[] vp;

Const objects

Objects can be constant:

const student s{60, 70, 80}; 
s.assns = 100; // This will cause a compilation error

The fields of constant objects can not be changed after they are initialized.

However, we can not run any of the object's inbuilt functions:

const student s{60, 70, 80}; 
cout << s.grade() << endl; // This will cause a compilation error

Issue: The compiler does not know whether s.grade() will modify assns, mt, or final. The function call is
prevented because we do not know whether s.grade() will respect the constness of s.

If we know that grade won't modify any of the fields, we must declare it to use grade with a const object.



Example: Struct functions that work with const obejcts.

// Interface
struct Student { 
    int assns, mt, final; 
    float grade() const; // Note the const suffix 
}; 
 
// Implementation
float Student::grade() const { // Note the const suffix 
    return assns * 0.4 + mt * 0.2 + final * 0.4; 
} // Modifying any of the values will cause a compilation error

Note: The const suffix must appear in both the interface and implementation files, and trying to edit any
variable inside a const function will cause a compilation error.

With the above code, we can run the grade function on a const object:

const student s{60, 70, 80}; 
cout << s.grade() << endl; // This will work now since grade is a const 
method

const objects may only have const methods called on them. Non-const objects may have either const or
non-const methods called on them,

What if we wanetd to collect stats on our objects?

struct Student { 
    int assns, mt, final; 
    int calls = 0; 
    float grade() const { 
        ++calls; 
        return assns * 0.4 + mt * 0.2 + final * 0.4; 
    } 
}; 

Ths would not work because the function increments calls.

Issue: Difference between physical vs logical constness:

Physical: Did the bits of memory that make up the object change?
Logical: Did the "essence" of the object change? Do I consider this object different after running the
method?



We can make an exception to what the compiler checks be declaring a field to be mutable.

struct Student { 
    int assns, mt, finals; 
    mutable int calls; // Can be changed in const mathods (for both const and 
non-const objects) 
} 

The mutable keyword needs to be used sparingly, since it decreases the usefulness of const.

Static fields and methods

What if I want to record the number of calls for ALL Student objects, and not just one. Or keep track of the
number of Students created?

We use static fields:

struct Student { 
    int assns, mt, final; 
    inline static int numInstances = 0; 
 
    Student(int assns, int mt, int final): assns{assns}, mt{mt}, final{final} 
{ 
        ++numInstances; 
    } 
}; 
 
Student s{60, 70, 80}; 
Student r{100, 100, 100}; 
cout << Student::numInstances << endl; // Will print out 2
// s.numInstances also works, but is not recommended

Any static fields are defined for the object rather than for each instance, and the value is shared across all
instances of the object. The iniine keyword is used to allow static fields to be initialized directly in the
interface rather than in the implementation file.

Static methods, just like static fields, are defined for the class rather than for any one particular object. Static
methods can only access static fields.

struct Student { 
    ... 
    static void howMany() { 
        cout << numInstances << endl; 



    } 
}; 

In order to call this function we call Student::howMany();. s.howMany() won't work.

Three-Way Comparison

Let's go back over how string comparison in C works: strcmp(s1, s2):

< 0 if s1 < s2 (lexicographically)
== 0 if s1 == s2
> 0 if s1 > s2

In order to compare 2 strings, we would do the following:

// In C
int n = strcmp(s1, s2); 
if (n < 0) { ... } 
else if (n == 0) { ... } 
else (n > 0) { ... } 

// In C++
if (s1 < s2) { ... } 
else if (s1 == s2) { ... } 
else { ... } 

Notice that in C, there is only one string comparison being done (by running strcmp). On the other hand, in
C++, there are 2 different string conparisons being done. This causes an unnecessary waste of resources since
the exact samme comparison is being done twice, even though it only needs to be done once.

As of C++20, there is a more efficient way:

// 3-way comparison operator: (Spaceship operator) 
s1 <=> s2; 

Using the 3-way comparison operator is identical to using strcmp in C. Note that in order to use it we need to
import the <compare> library.

std::strong_ordering n = (s1 <=> s2); 
// std::strong_ordering is the return value of <=>
if (n < 0) { ... } 



else if (n == 0) { ... } 
else (n > 0) { ... } 

std::strong_ordering is a lot to type. Instead, we can use automatic type deduction:

auto n = (s1 <=> s2); 
// n's type is the return type of the expression on the RHS

We may also overload the spaceship operator for our own data types. If we define <=> for a type, we also
automatically get all the other comparison operators automatically:

v1 == v2
v1 != v2
v1 <= v2
v1 >= v2
v1 < v2
v1 > v2

Even after we define the spaceship operator, we can overload operator== again, since it is sometimes
possible to check equality much more efficiently than comparion.

Example: Operloading the spaceship operator.

struct vec { 
    int x, y; 
    auto operator<=>(const vec& other) const { 
        auto n = x <=> other.x; 
        return (n == 0) ? (y <=> other.y) : n; 
    } 
}; 

Here, we are simply comparing the fields in declaration order.. If that is the case, we can use the default
version of operator<=>. This is not provided by default and we need to specify that we are using default
behaviour.

struct vec { 
    int x, y; 
    auto opertor<=>(const vec& other) const = default; 
} 



Note: = default also works for all constructors, destructors, and operattors that the compiler provides by
default.

Consider a case where = default is nott appropriate for <=>. Ex. Linked lists.

struct Node { 
    auto operator<=>(const Node &other) const { 
        auto n = (data <=> other.data); 
        if ((n != 0) || (!next && !other.next)) return n; 
        if (!next && other.next) return std::strong_ordering::less; 
        if (next && !other.next) return std::strong_ordering::greater; 
        return *next <=> *other.next; 
    } 
}; 

Encapsulation

Let's consider our linked list example again:

struct Node { 
    Node *next; 
    int data; 
    // Big 5 
}; 

We can cause errors by incorrectly setting values for Node objects.

Node n1{1, new Node{2, nullptr}}; 
Node n2{3, nullptr}; 
Node n3{4, &n2}; 

When this program finished running, the following happens:

The destructor runs on n1, and frees the Node that is on the heap.
The destructor runs on n3, but fails because it tries to free n2, which is stack allocated.

Even if we did these with variables that were all heap-allocated, we would end up with double-free errors.

We did not account for this happening when we wrote the big 5, because we always assumed:

1. next is always nullptr, or pointing to heap-allocated memory.
2. No sharing of data between lists.



These are invariants - properties of a data structure that must always be true.

However, these invariants can easily be violated by the user.

Encapsulation provides a solution to users violating invariants.
Users should treat our objects like "capsules" or "black boxes", where they have no access to underlying data,
but rather interact with the objects by calling methods.

This is where access specifiers are useful. There are 2 different types:

public fields / methods: can be accessed anywhere.
private fields / methods: can only be accessed / called within class methods.

Example: vec struct using access specifiers

struct vec { 
    private: 
        inr x, y; 
    public: 
        vec(int x, int y); 
        vec operator+(const vec& other) const; 
}; 

It is preferred to keep fields private by default.

C++ has a class keyword, where the default visibility of fields / methods is private, unlike structs, where it
is public.
Note that this is the only difference between class and struct.

Example: The vec object being implemented as a class,.

class vec { 
    int x, y; // Private by default, can not be called outside vec methods 
    public: 
        vec(int x, int y); 
        vec operator+(const vec& other) const; 
}; // Semicolon at the end, like with structs

Example: Revisit linked lists - add encapsulation, protect invariants

// List.cc
export module list; 
export class List { 
    struct Node; // Private nested class 
    Node *head = nullptr; 



 
    public: 
        ~List(); 
        void addToFront(int n); 
        int ith(int i); 
}; 
 
// List-impl.cc
struct List::Node { 
    int data; 
    Node *next; 
    ~Node { delete next; } 
    // ... Rest of big 5, if needed 
}; 
 
List::~List() { delete head; } 
 
void List::addToFront(int n) { 
    head = new Node{n, head}; 
} 
 
int List::ith(int i) { 
    Node *cur = head; 
    for (int j = 0; j < i; ++j) cur = cur->next; 
    return cur->data; 
} 

Issue: Looping through a list takes $O(n^2)$ time.

How can we have fast iteration while maintaining encapsulation?

Solution: Iterator pattern

Iterator pattern is a design pattern - effective solution to a common problem.

We solve the issue by creating an interator class, which is an abstraction of a pointer. We keep track of how far
we have reached, and allow the user to access data but not modify anything.

Example: List data structure with Iterator pattern.

class List { 
    struct Node; 
    Node *head = nullptr; 
 
    public: 
        class Iterator { 
            Node *cur; 
 



            public: 
                Iterator(Node *cur): cur{cur} {} 
 
                Iterator& operator++() { 
                    cur = cur->next; 
                    return *this; 
                } 
 
                bool operator!=(const Iterator& other) const { 
                    return cur != other.cur; 
                } 
 
                int& operator*() const { 
                    return cur->data; 
                } 
        }; // End iterator 
 
        // List class 
        Iterator begin() const { 
            return Iterator{head}; 
        } 
 
        Iterator end() const { 
            return Iterator{nullptr}; 
        } 
 
        // Also add addToFront, ith, and Big 5 [like in previous example] 
}; // End List class

// Example code for iterator class
int main() { 
    List l = addToFront(1); 
    for (List::Iterator it = l.begin(); it != l.end(); ++it) { 
        cout << *it << endl; 
    } // This loop runs in O(n) time. 
} 

If you have a class with the following:

1. begin and end methods returning some iterator type.
2. This iterator type has ++, !=, and *.

You can use a range-based for loop.

Exmaple: Range-based for loop with iterator class



// If you want to get a copy of the data stored in the class
for (int n : l) { 
    cout << n << endl; // n here is a copy 
} 
 
// If you want to use the original data
for (int& n : l) { 
    ++n; // This will presist 
} 

End of Midterm Content

This method of Encapsulation still has a small issue: auto it - List::Iterator{nullptr};

This violates the idea that all ierators are created by calling begin() or end(). While
List::Iterator{nullptr} is the same thing that is returned by end() in this case, it is not
necessarily the case with other data structures.

Consider makinf List::Iterator's contructor private.

Being a private method, it can not be called by the user.
However, even List would not be able to make iterators in begin() or end().

Solution: Make an exception for the List class so that it gets previleged access to the normally private
constructor for Iterator.

"We use the power of friendship"

Example: Iterator with friend classes.

class List { 
    struct Node; 
    Node *head = nullptr; 
    public: 
        class Iterator { 
            Node *cur; 
            Iterator(Node *cur): cur{cur} {} 
            public: 
                // Operator overloads 
                friend class List; // This can be anywhere in Iterator 
        }; // End iterator 
        Iterator begin() { return Iterator{head}; } 
        Iterator end() { return Iterator{nullptr}; } 
}; // End List

If class A declares class B as a friend, then B can access all the private fields / methods of A.



Now, a user can now create an Iterator, but List still can. Thus, we can be sure that all Iterators can be
created via begin() or end().

Advice: Limit your friendships - More friendships means that it is more difficult to reason about private fields /
methods.

Consider using accessor / mutator methods instead (getters / setters).

Example: Accessors and mutators for the vec class.

class Vec { 
    int x, y; 
    public: 
        int getX() const { return x; } 
        int setX(int a) { x = a; } 
        int getY() const { return y; } 
        int setY(int b) { y = b; } 
} 

We can also declare friend methods.

How can we create a private variable that can still be printed out by an ostream?

Must be a standalone function.
We can't declare a friend class here.
We could use getters in some cases.
But sometimes, we might want a variable that is normally private.

We can declare friend functions just like how we declare friend classes. Instead of providing a class name, we
provide a function signature.

Example: Declaring output operator as a friend function.

ostream& operator<<(ostream& out, const vec& v) { 
    return out << "(" << v.x << ", " << v.y << ")"; 
} 
 
class vec { 
    int x, y; 
    public: 
        // This standalone function has access to x and y, even though they 
are private fields 
        friend ostream& operator<<(ostream&, const vec&); 
        // ... (Rest of class definition) 
} 



Equality Revisited

We now have an encapsulated List class.
We already have ith and addToFront methods. We could also add a length method?
There are 2 ways we could go about doing this:

Loop through, count the number of Nodes, and return the length once we have reached the end: $O(n)$
time.
Keep a length field andupdate it whenever addToFront is called. Return the value stored in this field
when the length method is called: $O(1)$ time.

The second option is generally preferred, as it allows us to optimize equality.
Previously, to check equality, l1 == l2 translated to (l1 <=> l2) == 0

Most lists will have different lengths, and so we could optimize the == operator by checking the length first, and
only compare the individual values if the lengths differ. If the lengths differ, then the equality is calculated in
$O(1)$ time.

Example: Optimized equality operator for a List class.

class List { 
    struct Node; 
    Node* head; 
    int length; 
    public: 
        bool operator==(const List& other) const { 
            if (length != other.length) return false; // Compare lengths 
            return (*this <=> other) == 0; // Compare values with <=> 
        } 
 
        bool operator<=>(const List &other) const { 
            // Check if any List is empty 
            if(!head && !other.head) return std::strong_ordering::equal; 
            if (!head) return std::strong_ordering::less; 
            if (!other.head) return std::strong_ordering::greater; 
            return *head <=> *other.head; // Compare Nodes with <=> 
        } 
} 

Spaceship operator provides >=, <=, >, < for List. We have overloaded the == operator, for which the
compiler will use the custom optimized version, as well as for !=, which is just the nagation of ==.

System Modelling



We want to graphically display the classes of a program at a high level.
We will use the popular standard language UML (Unified Modelling Language).

Example: UML diagram for the vec class.

vec

-x: Integer
-y: Integer

+getX():  Integer
+getY():  Integer

Here, there are 2 different sections. The upper section is for variables and the bottom section is for functions.
Anything prepended by a + is public, anything prepended by - is private.

Relationships Between Classes

There are many different ways that different classes can interact with each other.

Composition

Composition is one possible relationship between classes, where one classes is embedded within the other.

Example: Composition relationship.

class Basis { 
    vec v1, v2; 
}; 

Here, Basis is composed of 2 vecs. This is also called "owns-a". Here, Basis owns 2 vecs.

The following is the UML diagram for the Basis example:

Basis vecv1, v2
2

Properties of Composition: If "A owns-a B", then:

If A dies, then B also dies.
If A is copied, then B is copied (deep copy).
B has no independant existence outside of A.

Aggregation



Aggregation is similar to Composition, except with some minor differences. Instead of one class being
embedded in another, it is rather linked to the other. An aggregation relationship is also called "has-a".

Properties of Aggregation: If "A has-a B", then:

If A dies, then B keeps living.
If A is copied, then B is not copied (shallow copy).
B may have independant existence outside of A.

Example: Aggregation relationship.

class Student { 
    int id; 
    University* myUni{}; 
    public: 
        Student(...) {} 
        // Anything else 
}; 
 
int main() { 
    University uw { ... }; 
    Student s1 {1, &uw}; 
    Student s2 {2, &uw}; 
} 

The following is the UML diagram for the Student example:

Student UniversitymyUni
1

Typically, Composition uses object fields, while aggregation uses References or Pointers.

However, this is not always the case. Consider linked lists, implemented via pointers, but it is a composition
relationship.

UML diagram for a linked list:

List Nodehead
0..1

next

0..1

\



List Node
0..*

The first diagram suggests a recursive implementation, while the second diagram suggests an iterative
implementation.

Specialization / Inheritence

Imagine a program to manage and catalogue library books. We will manage Books, Texts, and Comics.

Example: Class implementations for the library catalogue program.

class Book { 
    string title, author; 
    int length; 
    public: 
        Book(...) { ... } 
}; 
 
class Text { 
    string title, author; 
    int length; 
    string topic; 
    public: 
        Text(...) { ... } 
}; 
 
class Comic { 
    string title, author; 
    int length; 
    string hero; 
    public: 
        Comic(...) { ... } 
}; 

Now, what if we want an array of all the books of the different types:

Should store Texts, Books, and Comics.

1. Use void pointers - can point at anything.
Not type safe

2. Use Union type:

Union BookType { 
    Book* b; 
    Text* t; 



    Comic* c; 
}; // This stores ONE of the data types

This is also not super safe and does not have any safeguards to prevent against anything that can result
in undefined behaviour.

BookType u; 
u.b = new Book{ ... }; 
cout << u.t << endl; // Undefined behaviour

The issue is that the compiler is not aware of the relationship between these classes:

Comic and Text are both types of Book.
A Comic "is-a" Book, and a Text "is-a" Book.

In this case, we would want to use a Specialization relationship, or "is-a" relationship. It is implemented in C++
using Inheritence.

class Book { // Basic class or Superclass 
    string title, author; 
    int length; 
    public: 
        Book(string title, string author, int length): 
            title{title}, author{author}, length{length} {} 
}; 
 
// Derived subclasses
// All fields / methods are inherited from Book
class Text: public Book { 
    string topic; 
    public: 
        Text(...) { ... } 
}; 
 
class Comic: public Book { 
    string hero; 
    public: 
        Comic(...) { ... } 
}; 

Text and Comic inherit from Book. This means that they have title, author, and length fields. A subclass
inherits all fields and methods from it's superclass.



title, author, and length are private in Book, and can only be acessed by Book, and not it's
subclasses.

Specialization or "is-a" in UML:

Book

Te x t Comic

The above syntax indicates Specialization, or public inheritence in C++.

Example: Incorrect constructor for a subclass.

// WARNING: This code does not work and the reason why is explained below.
class Text: public Book { 
    string topic; 
    public: 
        Text(string title, string author, int length, string topic): 
            title{title}, author{author}, length{length}, topic{topic} {} 
}; 

This code does now work, since title, author, and length are private to Book, and can not be changed by
Text. Furthermore, the MIL is only for the class in which it is defined, and thus, this method will not work even
if we set all the fields in Book to be public.

Let's go over the Object Creation Sequence, this time with all the steps:

1. Space is allocated.
2. Superclass constructor runs.
3. Fields are initialized via MIL.
4. Constructor body runs.

In step 2, the superclass constructor is called. If there are no arguments specified for the superclass
constructor, then the default constructor will be used. If the superclass does not have a default constructor,
then the code won't compile.

Example: Constructor for a subclass.

class Text: public Book { 
    string topic; 
    public: 
        Book(string title, string author, int length, string topic): 



            Book{title, author, length}, // Step 2 
            topic{topic} // Step 3 
            {} // Step 4 
}; 

Protected Variables and Methods

Generally, it is a good idea to keep superclass firlds private to subclasses. However, if we do want to give
subclasses access but not any other class or function, then we can use the protected keyword. It functions
similar to private, except that it grants access to both the class and any of it's subclasses.

protected variables are prepended by a # in UML.

Example: Different abilities for different subclasses.

// Consider adding multiple authors to Texts
class Book { 
    protected: 
        string title, author; 
        int length; 
    public: 
        Book (...) { ... } 
}; 
 
class Text: public Book { 
    string topic; 
    public: 
        Text(...) { ... } 
        void addAuthor(string a) { author += a; } 
        // The above function can access and modify author since it is a 
protected field 
}; 

Example: Protected mutators.

// This approach is recommended when working with inheritence
class Book { 
    string title, author; 
    int length; 
    public: 
        Book(...) { ... } 
    protected: 
        void setAuthor(string a) { author += a; } 
        // The above function may only be called inside Book or any of it's 



subclasses 
}; 

Virtual Methods

Let's consider the library program again. Suppose we want a Book case, which is an array of Books (of all the
different specializations) that my behave differently depending on which inerited class it is (Book, Text, or
Comic).

For example, let's create an isHeavy() method, which checks whether the Book is heavy or not. The
classification for whether each type of book is "heavy" is as follows:

Book: heavy if > 200 pages
Text: heavy if > 500 pages
Comic: heavy if > 30 pages

Example: Simple implementation of isHeavy() method for Book and Text classes.

class Book { 
    protected: 
        string title, author; 
        int length; 
    public: 
        Book(...) { ... } 
        bool isHeavy() const { 
            return length > 200; 
        } 
}; 
 
class Text: public Book { 
    string topic; 
    public: 
        Text(...) { ... } 
        bool isHeavy() const { 
            return length > 500; 
        } 
}; 
 
Book b{"...", "...", 300}; 
Text t{"...", "...", 300, "topic"}; 
b.isHeavy(); // True 
t.isHeavy(); // False

This makes sense. While both b and t have 300 pages, b is a Book and is thus considered heavy while t is a
Text and is thus not heavy.



However, what if we were to save a Text into a Book?

Book b = Text{"...", "...", 300, "topic"}; 
// This works because Text inherits from Book. This won't work the other way. 
 
b.isHeavy(); // Returns True
// This would use the Book definition

After assigning b to a Book, we lose all the information that b was a Text. b is from that point treated as a
Book. This is because it is running the compiler provided move constructor, which only moves title, author,
length. The same thing also happens with copy constructors.

Object slicing: Constructor runs for a superclass and chops off the subclass fields.

What if we use pointers instead?

Text t{"...", "...", 300, "topic"}; 
Book *bp = &t; 
bp->isHeavy(); // Also returns True

To get isHeavy() to use the Text definition even if it is pointed to by a Book pointer, we must use a virtual
method.

Every object in C++ actually has 2 different types:

Static Type: Given by the type in the declaration.
Book *pb = &t; < In this case, the static type is Book.
Dynamic Type: The type of the "underlying" object.
Book *pb = &t; < In this case, the dynamic type is that of t.

How to determine which type is being used:

1. If not using a pointer or reference, any method is always called based on the static type.
2. If using a pointer or a reference:

Non-virtual method: Use static type.
Virtual method: Use dynamic type.

A virtual method will be called based on the dynamic type of the object that it is being called on.

Example: Virtual method

class Book { // Superclass 
    ... // Fields 
    public: 



        virtual bool isHeavy() const { return length > 200; } 
        ... // Other methods, if required 
}; 
 
class text: public Book { // Subclass 
    ... // Fields 
    public: 
        virtual bool isHeavy() const override { return length > 500; } 
        ... // Other methods, if required 
}; 

Assuming the above virtual method definition, the following code will run as explained in the comments.

Text t{"...", "...", 300, "topic"}; 
Book b{"...", "...", 300}; 
Text *pt = &t; 
Book *bp = &t; 
 
t.isHeavy(); // False 
b.isHeavy(); // True 
pt->isHeavy(); // False 
pb->isHeavy(); // False

This is what we want to happen. Now, let's revisit the Bookcase example with the same virtual method
definitions.

Book *myBooks[2]; 
myBooks[0] = new Text{...}; 
myBooks[1] = new Comic{...}; 
 
for (int i = 0; i < 2; ++i) { 
    cout << myBooks[i]->isHeavy() << endl; 
} // This code will use the dynamic type for each book

Note: The override keyword does not actually do anything during the execution of the program. However, it
is useful to add because it checks during compile time in order to ensure that the method is actually virtual
for the superclass and provides a helpful error if it isn't.

Virtual methods are an example of polymorphism. The word "polymorphism" is Greek for "many forms".

Here, a superclass is being able to represent many different subclasses (forms).
We've actually seen this before. For example, ifstream is an istream.

Destructors Revisited



Let's consider how a destructor would work for a superclass and it's subclass(es).

Example: INCORRECT destructor for superclass and subclass.

// Class definitions
class X { 
    int *n; // Array of int's in the heap 
    public: 
        X(int size): n{new int[size]} {} 
        ~X() { delete n; } 
}; 
 
class Y: public X { 
    int *m; // Another array of int's in the heap 
    public: 
        Y(int size1, int size2): Y{size1}, m{new int[size2]} {} 
        ~Y() { delete[] m; } 
}; 
 
// Example code 
X *xp = new X{5}; 
Y *yp = new Y{5, 10}; 
X *xptoy = new Y{5, 10}; 
 
delete xp; // Works
delete yp; // Works
delete xptoy; // Leaks memory!

Let's go over the full object destruction sequence now, in order to understand why this is happening.

Object Destruction Sequence:

1. Destructor body runs.
2. Object fields have their destructors called in reverse declaration order.
3. Superclass destructor runs.
4. Space is reclaimed

Why does calling the destructor on xptoy leak memory?

xptoy is a Y pointer to an X type.
Since the destructor is not a virtual function, X's destructor is called instead of Y's, which causes a
memory leak.

Solution: Make the destructor for X (superclass) virtual.

class X { 
    ... // Fields 



    public: 
        virtual ~X() { delete[] n; } 
}; 

If you know that a class may be subclassed, you must ALWAYS make it's destructor virtual. If you know that a
class will NEVER be subclassed, you should make the compiler enforce it via final.

// This class can not be subclassed
// If done, the program will not compile
class C final { 
    ... // Fields and methods 
}; 

Pure Virtual Methods

Let's consider a program to manage the different students in a university.

class Student { 
    public: 
        virtual int fees() const; 
}; 
 
class Regular: public Student { 
    public: 
        int fees() const override; 
}; 
 
class Coop: public Student { 
    public: 
        int fees() const override; 
}; 

This program has classes for Regular and Coop Students, with each of them having different fees that they
need to pay. We have declared a function Student::fees(), but we do not ever want this to be run, since we
never intend on creating Student objects that aren't Regular or Coop. It is possible to enforce this using
pure virtual methods.

Example: Pure virtual method

class Student { 
    public: 
        virtual int fees() const = 0; 



        // Setting a function to 0 makes it pure virtual 
}; 

Pure virtual methods do not need to have an implementation, although one can be created if needed. Any class
that defines one or more pure virtual methods can not be instantiated. For example, running Student s;
after the above example code will cause a compilation error.

While the compiler might not require an implementation for pure virtual methods, we might have to provide
one in some cases. For example, if we make a pure virtual destructor, we need to implement it.

Student is now an abstract class. An abstract class can not be instantiated. Any subclasses of an abstract
class are also abstract, unless they provide an implementation for all the inherited pure virtual methods. Such
sublasses are referred to as concrete.

If we want to make a class abstract, but there are no methods for a class that could reasonably be made pure
virtual, the best pratice is to make the destructor pure virtual. Note that we would still need to provide an
implementation for it.

Abstract classes are useful for organizing subclasses.

Example: Abstract class and inherited concrete class

class Student { // Abstract 
    protected: 
        int numCourses; 
    public: 
        virtual int fees() const = 0; 
}; 
 
class Regular { // Concrete 
    public: 
        int fees() const override { 
            return 1600 * numCourses; 
        } 
} 

In UML, we represent abstract classes and pure virtual methods with italic text. If we are drawing out a
diagram, we can surround anything with asterisks (*) instead of italicizing it.

*Student*

#numCourses

+ *fees(): Integer*

Revisiting Big 5 with Inheritence



Let's once again consider the Book and Text classes.

class Book { 
    string title, author; 
    int length; 
    public: 
        ... // Big 5 
}; 
 
class Text: public Book { 
    string topic; 
    public: 
        // Nothing here 
        // Use compiler-provided Big 5 
}; 
 
Text t1{...}, t2{...}; 
t1 = t2; 

In the above example, the compiler-provided copy constructor works perfectly, and all of t1's fields get set to
the values of t2's fields.

Let's see what the compiler-provided Big 5 look like for inherited classes.

// Copy constructor 
Text::Text(const Text& other): Book{other}, topic{other.topic} {} 
 
// Move constructor 
Text::Text(const Text&& other): 
    Book{std::move(other)}, topic{std::move(other.topic)} {} 

The copy constructor makes sense here, but the move constructor has this new std::move syntax. This is
because if we were to simply call Book{other}, it would copy all the individual fields rather than moving
them. This is because other is considered an Lvalue here (even though it is actually an Rvalue reference)
because it stays alive for the entire length of the function. Due to this, Lvalue copy semantics are invoked, and
all the fields are copied rather than moved.

We can use std::move to force something to be treated as an Rvalue, and thus invoke move semantics. We
also need to use std::move for non-inherited classes when initializing strings and objects.

Let's see how the different compiler provided assignment operators behave.

// Copy Assignment 
Text& Text::operator=(const Text& other) { 



    Book::operator=(other); // Call Book's operator 
    topic = other.topic; 
    return *this; 
} 
 
// Move Assignment 
Text& Text::operator=(Text&& other) { 
    Book::operator=(std::move(other)); 
} 

However, consider this example.

Text t1{"Algorithms", "CLRS", 1000, "CS"}; 
Text t2{"Shakespeare", "Mr. English", 200, "English"}; 
Book& r1 = t1; Book& r2 = t2; 
r1 = r2; 
// operator= is non-virtual, so it uses the static type

This is not good, since t1 now contains:

{"Shakespeare", "Mr. English", 200, "CS"} 

All the Book fields are copied over, but all the Text fields remain the same. This is called "partial
assignment". We can solve this by making Book::operator= virtual.

Example: virtual copy assignment operator

class Book { 
    string title, author; 
    int length; 
    public: 
        virtual Book& operator=(const Book& other); 
        ... // Rest of Big 5 
}; 
 
class Text: public Book { 
    string topic; 
    public: 
        Text& operator=(const Book& other); 
        ... // Rest of Big 5 
} 



Notice the special syntax here. The overloaded function returns a Text (which is allowed, since it is a subclass
of the return type of the virtual function), but takes in a Book. This is because the arguments need to match
exactly with the arguments in the virtual function. This is similar to how the appropriate override for a function
is chosen by the compiler, where just the arguments are compared, and the return type is meaningless.

This works as we want it to, however, it allows the following:

Text t1{...}; 
t1 = Book{...}; 
t1 = Comic{...}; 

This is mixed assignment, and the operator shown in the previous example allows this to compile. Thus, we
are faced with a dilemma:

If operator= is non-virtual: Partial assignment
If operator= is virtual: Mixed assignment

The only realistic solution to this problem (for now) is to restructure the class hierarchy. It is advised to always
make superclasses abstract. The UML diagram of this updated class structure is as follows:

*AbstractBook*

Book Te x t Comic

Example: Book example with abstract superclass.

class AbstractBook { 
    string title, author; 
    int length; 
    protected: 
        AbstractBook& operator=(const AbstractBook& other) = default; 
    public: 
        AbstractBook(...) { ... } 
        virtual ~AbstractBook() = 0; 
        // Use the destructor to make a class abstract 
        // If no other method makes sense 
        ... // Rest of Big 5 
}; 
 
class Regular: public AbstractBook { 
    public: 



        Regular& operator=(const Regular& other) { 
            AbstractBook::operator=(other); 
            return *this; 
        } 
        ... // Rest of Big 5 
}; 
 
... // Similar code for other 2 subclasses (Text and Comic)

The above code will not suffer from either mixed or partial assignment:

Mixed Assignment: Text can only be set to Text, Comic only to Comic, etc. So setting one tyoe of
book to another will raise a compilation error, because there is no operator overload for it.
Partial Assignment: We can not perform assignment to AbstractBook objects because it's constructor
is protected and can thus only be called from inside it or any of it's subclasses.

Templates

Let's consider the linked list that was implemented in the past.

class List { 
    struct Node { 
        int data; 
        Node *next; 
    }; 
    Node *head; 
    public: 
        class Iterator { 
            int& operator*() const; 
            ... // Other iterator methods 
        }; // End iterator 
        int ith(int i) const; 
        void addToFront(int n); 
}; 

While this implementation works, it only works with ints. If we wanted to make a List of any other type (like
string, bool, or Student), then this implementation will not work. There are multiple options for how to
solve this issue:

Copy-paste class contents and change the type of data stored: This works, but is not effective, since every
minor change needs to be reflected in every List implementation.
Use void pointers: We would lose the ability to use overloaded operators on the contents of the list, and
also run the risk of memory leaks if the client code is not implemented correctly.
Use a template: This is the best option available, and involves creating a "template" for the List class,
which is used to automatically generate classes for each type that is being stored.



Example: List class implemented with templates, along with example client code.

template<typename T> class List { 
    struct Node { 
        T data; 
        Node *next; 
    }; 
    Node *head; 
    public: 
        class Iterator { 
            T& operator*() const; 
            ... // Other iterator methods 
        }; // End iterator 
        T ith(int i) const; 
        void addToFront(const T& n); 
}; 
 
// Client code 
List<int> l; 
l.addToFront(2); 
l.addToFront(3); 
 
List<string> ls; 
ls.addToFront("hello"); 
 
for (List<int>::Iterator it = l.begin(); it != l.end(); ++it) { 
    cout << *it << endl; // Iterator works as expected 
} 
 
List<List<int>> l3; // Can make a List of Lists 
l3.addToFront(l); 

Templates are just as fast during runtime as making a class for each data type, although compile time might
slightly increase. This is because the compiler creates a copy of the template class for each type T that is used.

Note: C++ templates are actually Turing complete, and many calculations that don't depend on user input can
be calculated during compile time.

Vectors (Standard Template Library)

C++ has a Standard Template Library, which contains a collection of useful templated classes.

One of these classes is std::vector. It is found in <vector> and is an automatically resizing array.

Example: Client code for std::vector



vector<int> v{4, 5}; // Contains {4, 5} 
v.emplace_back(6); // Contains {4, 5, 6} 
v.emplace_back(7); // Contains {4, 5, 6, 7}

All memory management is handled by the vector class, and there is no need to allocate or free memory
when using it.

Note: When initializing vectors, using {} and () cause different behaviour.

vector<int> v{4, 5}; // Contains {4, 5}
vector<int> v(4, 5); // Contains {5, 5, 5, 5}

We can also use automatic type deduction for vectors, altuough it is not recommended.

vector w{1, 2, 3}; // int type is inferred

Example: Looping through vectors in different ways.

// Regular loop (like for arrays)
for (int i = 0; i < v.size(); ++i) { 
    cout << v[i] << endl; // Constant time 
    // vector class has overloaded [] operator 
} 
 
// Using an iterator
for (vector<int>::iterator it = v.begin(); it != v.end(); ++it) { 
    cout << *it << endl; 
} // Notice iterator here has a lowercase 'i' 
 
// Iterator with range-based for loop
for (int n : v) cout << n << endl; 
 
// Reverse iterator
for (vector<int>::reverse_iterator it = v.rbegin(); it != v.rend(); ++it) { 
    cout << *it << endl; 
} // We can not make a range-based for loop for the reverse iterator

More vector functions:

v.pop_back(); Removes the final element
v.erase(it); Removes the element pointed to by it



Note: Since v.erase(it); deletes the current element, it means it updates the position of the iterator, and
this there is a specific syntax that needs to be used when calling it in a for loop.

Example: Code that iterates through a vector and removes all elements that are ewual to 5.

// Notice that we can use automatic type deduction
for (auto it = v.begin(); it != v.end(); ++it) { 
    if (*it == 5) v.erase(it); 
    else ++it; 
} 

It is recommensed to use vectors instead of new[] and delete[] since they are safer. It is also guaranteed
that vectors are implemented using arrays (and thus have constant access times) regardless of the compiler,
platform, and flags used.

Design Patterns

In general, we would like to program for interfaces instead of implementations. For this, we use abstract
classes to provide method names and signatures, which we can inherit from custmize the behaviour of the
functions.

Iterator Pattern

We know that the Iterator is a design pattern. Since a similar implmentation could be used in many places,
the C++ language has the range-based for-loop, in order to simplify the use of Iterators.

We can simplify Iterators even further, by manking an Abstract iterator class, and inheriting from it to make
more iterators, which all share the same basic behaviour.

Example: Abstract iterator class.

// Abstract class
class AbstractIterator { 
    public: 
        virtual int operator*() const = 0; 
        virtual AbstractIterator& operator++() = 0; 
        virtual bool operator!=(const AbstractIterator& other) const = 0; 
        virtual ~AbstractIterator() {} 
}; 
 
// We can now inherit from this class to make other iterators
class List { 
    ... // Fields and methods 
    public: 



        class Iterator: public AbstractIterator { 
            ... // Implement virtual methods 
        }; 
}; 
 
class Tree { 
    ... // Fields and methods 
    public: 
        class Iterator: public AbstractIterator { 
            ... // Implement virtual methods 
        }; 
}; 
 
// We can also create functions that work on an AbstractIterator. These 
functions can be called with it's subclasses without changing the functions 
themselves
void foreach(AbstractIterator& start, AbstractIterator& end, void (*f) (int)) 
{ 
    while (start != end) { 
        f(*start); 
        ++start; 
    } 
} 

Decorator Pattern

We want to be able to add / remove functionality at runtime. For example, let's consider making a GUI
windowing system. We might want a basic window, as well as some toggleable features, like Tabs, Scrollbar, and
Bookmarks.

If we were to create a superclass, and make a subclass for every permutation of features being enabled /
disabled, we would have to make $2^n$ subclasses (where $n$ is the number of toggleable features). This
causes exponential growth in the amount of code needed, which is undesirable.

Inetead, we could use a decorator pattern. A UML diagram is given below.



*Component*

+ *operation()*

ConcreteComponent

+operat ion()
*Decorator*

ConcreteDecoratorA

+operat ion()

ConcreteDecoratorB

+operat ion()

next

This acts like a linked list of functionality. Here, ConcreteComponent describes the default behaviour without
any added features, and ConcreteDecorators add on to the functionality of the rest of the list.

Example: Pizza Ordering App.

Imagine we wanted to make an app to order pizza, and wanted to be able to add different toppings, sauces,
and crusts.

This is the UML diagram:

*Pizza*

+ *price(): Float*
+ *desc(): String*

CrustAndSauce

+price(): Float
+desc(): String

*Decorator*

Topp ing

+price(): Float
+desc(): String

StuffedCrust

+price(): Float
+desc(): String

DippingSauce

+price(): Float
+desc(): String

next



This is the code implementation:

// Base class
class Pizza { 
    public: 
        // Pure virtual methods 
        virtual float price() const = 0; 
        virtual string desc() const = 0; 
        virtual ~Pizza() {} // Virtual destructor 
}; 
 
class CrustAndSauce: public Pizza { 
    public: 
        // Overriden methods 
        float price() const override { return 7.99; } 
        string desc() const override { return "pizza"; } 
}; 
 
class Decorator: public Pizza { 
    protected: 
        // Linked list implementation 
        // Nothing else is required 
        // Subclasses add other fields 
        Pizza *next; 
    public: 
        // Constructor and destructor 
        Decorator(Pizza *p): next{p} {} 
        ~Decorator() { delete next; } 
}; // This is abstract since price() and desc() are not implemented 
 
class Topping: public Decorator { 
    // Name of topping 
    string name; 
    public: 
        // Constructor 
        Topping(string name, Pizza *p): Decorator{p}, name{name} {} 
        // Overriden price() and desc() methods 
        float price() const override { 
            return 0.99 + next->price(); 
        } 
        string desc() const override { 
            return next->desc() + " with " + name; 
        } 
}; 
 
class StuffedCrust: public Decorator { 
    public: 
        // Constructor (only needs to call superclass ctor) 
        StuffedCrust(Pizza *p): Decorator{p} {} 



        // Overriden price() and desc() methods 
        float price() const override { 
            return 1.50 + next->price(); 
        } 
        string desc() const override { 
            return next->desc() + " with stuffed crust"; 
        } 
}; 
 
// Example client code
int main() { 
    Pizza *newPizza = new CrustAndSauce{}; // Basic Pizza 
    myPizza = new Topping{"cheese", myPizza}; // Add toppings 
    myPizza = new Topping{"olives", myPizza}; 
    myPizza = new StuffedCrust{myPizza}; // Add stuffed crust 
} 

Here, the decorators act as a linked list, with the stuffed crust being the first in the list, which points to olives,
which points to cheese, which finally points to the crust and sauce. Any functions that are called to the pizza
firsr call the stuffed crust, which then calls the toppings and then the crust and sauce by using next,
recursively generating the price or description.

Note: We could also refactor this implementation to make it so that the CrustAndSauce is also a Decorator,
and the linked list of Decorators ends when next for any Decorator is nullptr. However, this
implementation requires a lot more testing and sanity checks.

Observer Pattern

Consider the case where we want some class with data to dispatch updates to other objects whenever it's data
changes. For example: graphs in spreadsheets, social media notifications.

Here is the UML diagram for the Observer Pattern:



*Observer*

+ *notify()*

*Subject*

+noti fyObservers()
+attach(Observer *o)
+detach(Observer *o)

ConcreteObserver

+not i fy ( )

ConcreteSubject

+getSta te( )

0 *

This is the steps of execution when the Subject is changed:

1. Concrete Subject is changed
2. notifyObservers is called (either inside or outside the class)
3. notify is called for each Observer in the Subject's list
4. Each ConcreteObserver can call getState and update accordingly

Example: Twitter, or similar social media app.

Concrete Subject: Tweeter, publishes tweets to followers Concrete Observer: Follower, reacts to updates to
the one Tweeter they follow.

// Abstract Subject class
class Subject { 
    // Observers vector 
    vector<Observer *> observers; 
    public: 
        // Notify observers 
        void notifyObservers() const { 
            for (auto p: observers) p->notify(); 
        } 
        // Add new observer 
        void attach(Observer *o) { observers.emplace_back(o); } 
        // Remove observer 



        void detach(Observer *o) { 
            // Iterate through vector 
            for (auto p: observers) { 
                // Remove and break out if o matches 
                if (*p == o) { 
                    observers.erase(p); 
                    break; 
                } 
            } 
        } 
        // Pure virtual destructor 
        // Since we don't have any other function 
        // to make pure virtual 
        virtual ~Subject() = 0; 
}; 
 
// External definition for destructor 
Subject::~Subject() {} 
 
// Abstract Observer class
class Observer { 
    public: 
        // Pure virtual notify function and destructor 
        virtual void notify() = 0; 
        virtual ~Observer() {} 
}; 
 
// Tweeter
class Tweeter: public Subject { 
    string lastTweet; // Most recent tweet 
    ifstream file; // File to read from 
    public: 
        // Constructor 
        Tweeter(const string& filename): 
            file{filename} {} 
        // tweet function 
        bool tweet() { 
            // set lastTweet to line from file 
            getline(file, lastTweet); 
            // Check whether file still has lines 
            return file.good(); 
        } 
        // getState - getter for most recent tweet 
        string getState() const { return lastTweet; } 
}; 
 
// Follower
class Follower: public Observer { 
    string name; // Name 
    Tweeter *iFollow; // Tweeter being followed 



    public: 
    // Constructor 
        Follower(string name, Tweeter *t): 
            name{name}, iFollow{t} { 
                iFollow->attach(this); 
        } 
        // notify function 
        void notify() override { 
            // Get latest tweet 
            string tweet = iFollow->getState(); 
            // Check if name is found in tweet 
            // and print a message accordingly 
            if (tweet.find(name) != string::npos) { 
                cout << name << "says: Yay!" << endl; 
            } else { 
                cout << name << "says: Boo!" << endl; 
            } 
        } 
}; 
 
// Example client code
int main() { 
    // Create Tweeter 
    Tweeter elon{"elon.txt"}; 
    // Create Followers 
    Follower joe{"joe", &elon}; 
    Follower mary{"mary", &elon}; 
    // Tweet and notify Followers 
    while(elon.tweet()) { 
        elon.notifyObservers(); 
    } 
} 

Factory Method Pattern (Virtual constructor pattern)

Problem: Want to be able to create diferent versions of an object based on policies that should be easily
customizable.

Example: Enemy and Level generation.

*Level*

Normal Hard

*Enemy*

Tur t le Boss



Let's say that Normal levels generate mostly Turtles, and some Bosses, while Hard leveles generate mostly
Bosses, and some Turtles.

class Level { 
    ... // Private fields and methods 
    public: 
        virtual Enemy *getEnemy() = 0; 
        virtual ~Level() {} 
        ... // Other public fields and methods 
}; 
 
class Normal: Public Level { 
    ... // Private fields and methods 
    public: 
        Enemy *getEnemy() override { 
            // Mostly Turtles, some Bosses 
        } 
        ... // Other public fields and methods 
}; 
 
class Hard: Public Level { 
    ... // Private fields and methods 
    public: 
        Enemy *getEnemy() override { 
            // Mostly Bosses, some Turtles 
        } 
        ... // Other public fields and methods 
}; 
 
// Client code 
Level l = ...; 
Enemy *e = l.getEnemy(); 
// We use e and l, and access their public methods
// This makes it easy to add new Levels, Enemies, and policies

Here, we are accessing the enemies in the level using a public pure virtual method. By changing the subclass
that we are creating, the behaviour of the functions will get altered based on the subclass being used. In this
way, we do not have to change the client code whenever we add or change levels and / or enemies.

Template Method Pattern, NVI

Not related to the C++ templates, but share the same name.

Problem: What if we want some customizable behaviour in the subclasses, but not all.

Tenplate Mathod Patterm:



Some portions of a superclass algorithm should be costomizable, whereas other parts stay the same.

Example: Code to draw a Turtle.

*Turt le*

RedTurt le GreenTurt le

class Turtle { 
    void drawHead() { /* Draw Turtle Head */ } 
    void drawLegs() { /* Draw Turtle Legs */ } 
    virtual void drawShell() = 0; 
    public: 
        void draw() { 
            drawHead(); 
            drawShell(); 
            drawLegs(); 
        } 
}; 
 
class RedTurtle: public Turtle { 
    void drawShell() override { 
        // Print out Red Shell 
    } 
}; 
 
class GreenTurtle: public Turtle { 
    void drawShell() override { 
        // Print out Green Shell 
    } 
}; 

Whenever we call draw() on a Turtle*, the drawHead() function is called from the Turtle class. Them the
drawShell() function is called from either the RedTurtle or the GreenTurtle class. Finally, the
drawLegs() function is called from the Turtle class.

Purpose of public methods - To provide an interface to clients, with invariants, pre-post conditions, and a
description of what the method does.

Purpose of virtual methods - To provide an "interface" for subclasses to change the bahaviour of.



What about public virtual methods? The very definition of them is contradictory, since they promise
behaviour to clients, while giving subclasses the power to change their behaviour. Thus, there is no guarantee
that the subclasses will respect the invariants when overriding.

The Template Method Pattern may be generalized into Non-Virtual Idiom (NVI). The NVI states the
following:

1. Public methods should be non-virtual.
2. Virtual methods should be private or protected.
3. Exception: Destructor should be public virtual.

Example: No NVI vs. NVI.

class DigitalMedia { // No NVI 
    public: 
        virtual void play() = 0; 
}; 
 
class DigitalMedia { // With NVI 
    virtual void doPlay() = 0; 
    public: 
        void play() { doPlay(); } 
} 

The main benefit here is flexibility.

We can add code that will always run when something is played by putting it before / after doPlay(),
ex. logging, statistics, cover art, check ability to play.
We can also add more "hooks" for customization by adding private virtual methods, like
showCoverArt().

We do not need to change the public interface for any of these modifications. The code will also remain as fast
as before, since the compiler will optimize out the extra function call.

While it is also possible to add new features without using NVI, we would have to track down every location
where play() is called and add the code to each location. Thus, it is easier to use NVI from the start rather
than adding it later.

Advanced C++ Features

Exceptions (Error Handling)

Let's revisit vectors. Recall that v[i] gets the i-th element of the vector. If i is outside bounds, then there is
undefined behaviour. However, there is also a different method. v.at(i) also gets the i-th element of the
vector, but if i is outside bounds, then an error is signalled rather than the program crashing,



This is an example of how error handling works in C++. Before we go into detail about C++ error handling, let's
recall how we would perform error handling in C:

1. Reserve a sentinel value like -1, INT_MIN, etc.
This shrinks our return space and makes it so that the reserved sentinel value can not be read in as
input. Furthermore, reserving a sentinel value is much more complicated when the value to be returned
is an array, vector, or class.

2. Return a struct with an error field.
a. This wastes unnecessary space for most returns.
b. The error field is very easy to ignore

3. Use a global variable, like the errno integer.
This is also easy to ignore, and may be overwritten if there are multiple errors that result from the same
line of code, resulting in one of them being ignored.

In order to handle errors better, C++ introduced exceptions.
In order to signal an error, an exception (exn) can be raised / thrown.. The program then goes to a handler /
catch block to deal with the exception.
If no appropriate handler is found, then the program crashes using std::terminate, where the program
instantly termainates, without freeing up any memory.

If v.at(i) has i out of bounds, then a std::out_of_range exception is thrown, which is found in the
<stdexcept> library.

Another example is when we call new, and the OS rejects the request for more memory. In this case, a
std::bad_alloc is thrown.

Example: Throwing and catching errors.

vector<int> v{1. 2. 3}; 
 
try { 
    // This line throws an error 
    int n = v.at(100); 
    // The control flow jumps to the catch block 
    // This line will never be run 
    cout << n << endl; 
} 
catch (out_of_range r) { 
    // r.what() returns a string that describes the error 
    cout << "Error: " << r.what() << endl; 
} 

Notice that out_of_range is just an object, and what() is a method describing the error that occurred. All
exception classes are just special types of objects, that store a string that explains the type of error.

Example: Throwing a custom error and catching it.



int main() { 
    try { 
        h(); 
    } catch (out_of_range r) { 
        cout << r.what() << endl; 
    } 
} 
 
void h() { g(); } 
void g() { f(); } 
void f() { 
    throw out_of_range{"f threw"}; 
} 

Once the exception is thrown, the control flow transfers from f directly to the catch block. In doing so, we
perform stack unwinding, where all stack memory between the error and the catch block gets freed (in this
case, it would be the stacks of f, g, and h). However, heap memory is NOT freed here, and thus any heap-
allocated memory in the error area that was also meant to be freed withing the error area would be leaked.

However, it is possible to ensure that heap-allocated memory will also get freed in case an exception is
thrown. More on this later.

After the exception is handled, the control flow switches to the code directly after the catch block, and the
program continues running.

Sometimes. we want a catch handler to perform some work, and then raise a new exception.

Example: Catching an exception and throwing another one.

try { ... } 
catch (out_of_range r) { 
    // Do some work, any changes, etc. 
    throw invalid_argument{"Reprompt Input"}; 
} 

Example: Catching an exception and throwing it again.

try { ... } 
catch(out_of_range r) { 
    // Do some work, any changes, etc. 
    throw; 
} 



We need to use throw, and not throw r, due to the chance of there being an inherited error class. Consider
an error type ErrorSituation. Since an exception is just a class, and can be inherited from. Let's say that we
have an error type SpecialError that inherits from ErrorSituation. Now, consider the following code:

try { ... } 
catch (ErrorSituation& e) { 
    throw e; 
} 

In this case, if e was an ErrorSituation, then there wouldn't be any problems. However, if e was a
SpecialError, then object slicing occurs, as the SpecialError gets converted into an ErrorSituation
object. However, if we just use throw, then no object slicing would occur.

We can also write a catch statement that works for any type of exception.

Example: Generic catch statement (for all error types).

try{ ... } 
catch (...) { // 3 dots inside catch () means catch all 
    ... // Error handling 
} 

In most cases, we throw and catch special objects. However, it is possible to throw and catch anything,
from primitives like int to custom data types.

It is also possible to create custom exception types:

class BadInput { ... }; 
try { throw BadInput{}; } 
catch (BadInput& b) { ... } 

Advice: throw exceptions by value, and catch them by reference. This prevents object slicing.

Advice: Do not let destructors throw an exception. Dectructors have an implicit tag called noexcept,
which means that if we were to throw an exception inside a destructor, then the program immediately crashes
(using std::terminate).

However, if we were to tag our destructor as noexcept(false), then it will not immediately crash, but
however, it can cause an issue with stack unwinding.

A rule in C++ is that we have at most one exception at any given time. If an error occurs and causes stack
unwinding, then the destructor runs for all the stack allocated objects. If there is an exception inside any of the
destructors, then it will cause two different exceptions:



1. The original exception that caused the stack unwinding.
2. The exception that was thrown inside the destructor.

The presence of two active exceptions will cause the program to crash using std::terminate.

STL Maps, Structured Bindings

An STL Map is an Array that can be indexed with different types rather than just an integer. It is found in
<map>.

Example: Creating and using an STL Map.

map<string, int> m; 
m["abc"] = 2; 
m["def"] = 3; 
cout << m["abc"] << endl; // 2
cout << m["ghi"] << endl; 
// If a key is not found, then the value is default constructed (objects) or 
zero-initalized (primitives). 
 
if (m.count("abc")) { ... } // m.count returns 1 if the key is found, and 0 
otherwise 
m.erase("abc"); // Removes the provided key and associated value

Iterating through an STL Map:

for (auto& p : m) { 
    cout << "key: " << p.first << ", value: " << p.second << endl; 
    // p.first is the key and p.second is the value 
} 

In the above example, p is of type std::pair<string, int>&. It is stored in the <utility> library.

pair is just a struct with two different fields, each storing a different template type. Here it is a string and
an int. We are using structs here because it is just a collection of data with no invariants to preserve.

Alternatively, we could also use a structured binding:

for (auto& [key, value] : m) { 
    cout << key << ", " << value << endl; 
} 



Structured bindings are used to convert data stored somewhere, typically in a struct (or class with public fields)
or array, into local variables.

vec v{1, 2}; 
auto [localX, localY] = v; 
// localX will be set to 1 and localY to 2

We can also use structured bindings for stack-allocated arrays, if the size is known:

int a[3] = {1, 2, 3}; 
auto [x, y, z] = a; 

Coupling / Cohesion

What should go into a module?
How to tell if code is well-structured?

So far, we have stored one class in each module. Larger programs contain multiple classes per module.

Coupling: To what extent do modules depend on each other:

Low Coupling: Simple communication via parameters / results.
<     Communication via arrays or structures.
<     Modules affect each others' control flow.
<     Modules share global data.
High Coupling: Modules have access to each other's implementation (friends).

Cohesion: How much do parts of a module relate to each other?

Low Cohesion: Module parts are unrelated (ex. <utility>)
<     Module parts share a common theme, but otherwise unrelated (ex. <algorithm>)
<     Module parts cooperate to manage a lifetime state (ex. read/open/write files)
High Cohesion: Module parts co-operate to perform one task.

We desire low coupling and high cohesion. The combination of both makes the program easy to understand
and change.

Example: How to declare 2 classes that depend on each other.

class A { 
    int x; 
    B y; 
}; 
 



class B { 
    int x; 
    A y; 
}; 

We can not determine the size of A or B. Thus, we break the chain of dependencies via a pointer.

class B; // Forward declaration 
 
class A { 
    int x; 
    B *y; 
}; 
 
class B { 
    int x; 
    A *y; 
}; 

We can not create forward declarations in a different module to the one where the class is actually declared,
and thus A and B need to be in the same module.

Note: Forward declaration is not allowed for object fields or for inheritence.

Example: Let's consider applying coupling and cohesion to TicTacToe.

class Board { 
    ... // Private fields and methods 
    public: 
        void play() { ... cout << "Your Move" << endl; } 
        ... // Other public fields and methods 
}; 

Here, Board is coupled with cout. We cn not reuse Board without getting print statements. What if we wanted
to print to a file, or not print anything at all?

class Board { 
    istream& in; 
    ostream& out; 
    ... // Other private fields and methods 
    public: 
        Board(istream& in, ostream& out): in{in}, out{out} { ... } 
        void play() { ... out << "Your Move" << endl; } 



        ... // Other public fields and methods 
}; 

While this allows us to cusomize the stream we use, we are still coupled with streams. What if we wanted to use
a graphical display or a Web API? The Board should not communicate with the user.

Single Responsibility Principle: Each class should have exactly one reason to change. If changes to two
different parts of the specification both require changes to the same class, the the SRP is violated.
Board State and Communication are both different things.

We used to use the main function to perform most communication, however this is not good style, since the
main function is not reusable like other classes are.

Instead, we should split the program into Model, View, and Controller for handling data, output, and input
respectively.

Model View Controller (MVC)

Model, View, Controller Architecture:

Model: Keeps track of the data, and the logic surrounding the data.
Communicates with the Controller via parameters / results.

Sometimes, there is an Observer relationship between the Model and View(s).
View: Handles output, and communication with the user.
Controller: Manages input, and control flow between the Model and View.
May encapsulate logic for rules / turn-taking.

Sometimes, input is taken from the View (ex. if it is a window).

The Controller receives input from the user, passes commands to the Model, and receives results from it. The
Controller also communicates with the View to provide information to be displayed, and the View passes
control back to the Controller.

The MVC architecture promotes the reuse of code. For example, one Model (like a TicTacToe game) could be
reused with different Models and Controllers (ex. CLI game, AI training, web app, etc.).

Exception Safety

Consider the following code, assuming that C is any object:

void f() { 
    C myC{}; 
    C *myCptr = new C{}; 
    g(); 
    delete myCptr; 
} 



While it might seem like this code is perfect, there is one edge case. If there was an error inside g(), and an
exception were to be thrown, then stack unwinding occurs, and f will be removed from the stack since it does
not catch any errors. While stack-allocated variables like myC will be freed during stack unwindong (the
destructor is called), the heap allocated myCptr will not be freed since it's destructor is never called.

Consider the above code with the code to free heap variables in case of an error:

void f() { 
    C myC{}; 
    C *myCptr = new C{}; 
    try{ g(); } 
    catch(...) { delete myCptr; throw; } 
    delete myCptr; 
} 

This works. However, it is super clunky. The code to delete heap memory is duplicated here, and we would also
have to repeat it for every function we call that could throw an exception. Furthermore, the code we need to at
to each catch block would only get more complicated every time we allocate more memory from the heap in
the function.

We want to make sure that delete runs for all the heap-allocated memory regardless of whether the function
terminates normally or due to an exception. Other languages have a finally clause, which runs regardless of
whether an exception was throws or not. However, C++ does not have this.

There IS a guarantee that the destructor will run for all stack-allocated objects during stack unwinding.

Solution: Wrap dynamically allocated memory in a stack-allocated object.
In general, using stack-allocated objects is preferred.

RAII - Resource Acquisition is Initialization

Constructor: Acquires the resource
Destructor: Releases the resource

We have already used RAII before. Consider using an ifstream:

{ // Start of some function 
    ifstream f{"file.txt"}; 
} // End of the function

Here, the file is accessed in the constructor of the ifstream, and closed in the destructor, which runs when
the function that the ifstream is defined in exits.

unique_ptr



std::unique_ptr<T>, found in <memory> is an RAII class that manages dynamic memory.
Constructor: Takes in a T*
Destructor: Deletes the pointer

Example: Using RAII in a function using unique_ptr.

// Once again, let C be any object
void f() { 
    C myC{}; 
    unique_ptr<C> myCptr{new C{}}; 
    g(); 
} 

Whichever way f exits, the destructor will run on myCptr, and the memory will be freed.

We could also use the std::make_unique function, also found in <memory>:

void f() { 
    C myC{}; 
    auto myCptr = make_unique<C>(); 
    g(); 
} 

make_unique creates a C object in the heap using new and the arguments that are provided to it.

What heppens if we copy a unique_ptr?

auto p = make_unique<C>(...); 
unique_ptr<C> q = p; // Invokes copy ctor for unique_ptr

Copying a unique_ptr doesn't make sense since having two different unique_ptr objects pointing to the
same memory address would cause a double delete. Because of this, the copy constructor and copy
assignment operators are disabled for unique_ptr.

unique_ptr also has a function called get(), which returns the memory address of the pointer that it
contains.

Example: Implementation of unique_ptr.

template <typename T> class unique_ptr { 
    T *ptr; 
    public: 



        // Ctor and dtor 
        explicit unique_ptr(Y *ptr): ptr{ptr} {} 
        ~unique_ptr() { delete ptr; } 
        // Disable copy ctor and assignment operator 
        unique_ptr(const unique_ptr<T>& other) = delete; 
        unique_ptr<T>& operator=(const unique_ptr<T>& other) = delete; 
        // Move ctor and assignment operator 
        unique_ptr(const unique_ptr<T>&& other) = delete: 
            ptr{other.ptr} { other.ptr = nullptr; } 
        unique_ptr<T>& operator=(const unique_ptr<T>&& other) { 
            delete ptr; 
            ptr = other.ptr; 
            other.ptr = nullptr; 
            return *this; 
        } 
        // Functions to get pointer and reference 
        T& operator*() { return *ptr; } 
        T* get() { return ptr; } 
}; 

If we need to copy a pointer, what should we do?
We first need to ask, "Who is in charge of ownership?"

Whoever owns the memory gets the unique_ptr
Everyone who just uses the memory can access it via raw pointers. We can use p.get() for this.

Our new understanding of ownership can be signalled via type.

unique_ptr - Represents ownership. Associated memory is deleted when it goes out of scope.
Raw pointers - Represent non-ownership. The default is that they do not free memory when they go out
of scope.
Moving unique_ptr - Transfer of ownership.

Parameters:

void f(unique_ptr<C> p): f takes ownership of the unique_ptr, which is deleted when f finishes
running.
void g(*p): Ownership is not transferred from the caller to g. g should just use p, and not delete it.

Results:

unique_ptr<C> f(): Returns always transfer ownership. The pointer is now owned by the caller.
C *g(): Call shouldn't delete the returned value. It is either stack memory or owned by someone else.

shared_ptr

Rarely, we my also need true shared ownership. Consider a graph data structure.
In such a case, we can use shared pointers (std::shared_ptr, found in <memory>).



Example: Using std::shared_pointer.

{ // Start of some function 
    auto p = make_shared<C>{...}; 
    if(...) { 
        auto q = p; 
    } 
} // End of the function

Once the if statement finishes executing, q gets deleted but p still exists and uses the pointer. Once the
function ends, p goes out of scope, and the shared_ptr is deleted since nothing uses the pointer anymore.

shared_ptrs work by maintaining a reference count.
On creation, it is incremented, and on deletion, it is decremented.
When it reashed 0, the underlying object is deleted.

Exception Safety Revisited, PImpl

Exception safety does not mean that a function never throws, or that it handles all exceptions internally.
If is about the guarantees we are given if we call a function and it throws an exception at us.

1. Basic Guarantee: If an exception is thrown from a function f, then the program is in a valid but
unspecified state. Class invariants are maintained, and there is no memory leaks or data corruption.
But that is all that can be guaranteed. Some data could've changed.

2. Strong Guarantee: In an exception is thrown from f, then the program state is returned to before the
function call. Thus, it will be like the function was never called in the first place.

3. NoThrow Guarantee: If we call f, then it will never throw an exception and it will always do it's job.

Consider the following code. What is the exception safety of c::f below?
Assume that A::g and B::h both provide the strong guarantee.

class C { 
    A a; 
    B b; 
    public: 
        void f() { 
            a.g(); 
            b.h(); 
        } 
}; 

If a,g() throws, then it will undo any side effects since it provides the strong guarantee. So it is as if the
function was never called.



If b.h() throws, then it will undo any of it's own side effects, but it can not undo any of a.g()'s work, since it
has already been successfully run.

Therefore, C::f can only provide the basic guarantee. This is not optimal, and it would be recommended to
modify the function to make it provide the strong guarantee.

Idea: Use temporary values. This way, if b.h() throws, then a and b aren't changed. This will work only if
a.g() and b.h() have only local side effects. Consider the following code:

class C { 
    A a; 
    B b; 
    public: 
        void f() { 
            A aTemp = a; 
            B bTemp = b; 
            aTemp.g(); 
            bTemp.h(); 
            a = aTemp; 
            b = bTemp; 
        } 
}; 

While this code looks like it provides the strong guarantee, there is one case where it would not. If an error is
thrown in the copy constructor for B in the line b = bTemp, then a has already been modified. Thus, this
implementation also only provides the basic guarantee.

We need to use the PImpl (Pointer to Implementation) idiom.
With this method, we can simply swap pointers at the end, which is guaranteed to never throw an exception.

Example: Exception safety with PImpl.

struct CImpl { 
    A a; 
    B b; 
}; 
 
class C { 
    unique_ptr<CImpl> pImpl; 
    public: 
        void f() { 
            auto temp = make_unique<CImpl> pImpl; 
            temp->a.g(); 
            temp->b.h(); 
            std::swap(temp, pImpl); 



        } 
}; 

This implementation provides the strong guarantee.

In general, if A::g or B::h do not provide any exception safety, then neither does C::f.

Vectors - RAII and Exception Safety:

vector<C> v - Represents ownership of C objects. When the destructor runs for v when it goes out of
scope, the C objects are also deleted. Does not support polymorphism since any subclasses inserted into
v will be sliced.
vector<C*> w - Represents non-ownership. When w goes out of scope, the destructor will not delete
what is pointed to by the C*s. Supports polymorphism since we can put subclass pointers in the vector.
vector<unique_ptr<C>> u - When u goes out of scope, the destructor runs and frees memory.
Indicates ownership and allows polymorphism.

Vectors and Exception Safety:

vector<T>::emplace_back(...) - Supports the strong guarantee. If it throws, then the dynamically
allocated array is unchanged.

Pseudocode steps to implement the code for emplace_back when the array is filled up and needs to double in
size, with strong guarantee:

Slow approach, but works everywhere:
1. Allocate a new array with 2 times the current capacity.
2. Copy each object from the old array to the new array. If any of the copy constructors throw an

error, then delete the new array and rethrow.
3. Point the old array pointer to the new array.

Faster approach, but requires T's move constructor to provide the nothrow guaranee:
1. Allocate a new array with 2 times the current capacity.
2. Use the move constructor to move each object to a new array.
3. Point the old array pointer to the new array.

As briefly mentioned in the title, the second approach does not always provide the strong guarantee, since it
any of the move constructors throws an error, then the original array has been modified since all the objects
before the erraneous object have been moved over to the new array.

In the real emplace_back implementation, if it is guaranteed that the move constructor will not throw, then
the compiler will move elements in the vector. However, if this guarantee isn't present then the compiier will
resize vectors via copying.

For the compiler to use the more optimal version of emplace_back, all moves and swaps must provide the
nothrow guarantee. If we tag a function as noexcept, then the compiler will perform the optimizations.

Example: Using the noexcept tag.



class C{ 
    ... 
    C(C&& other) noexcept; 
    C& operator=(C&& other) noexcept; 
}; 

Casting

Casting is the process of converting a variable of one type to a different type.

Recall, C casting:

Node n; 
int *ip = (int *) &n; 

C-style casting is not recommended in C++.

C++ instead provides 4 casting functions for various situations:

static_cast

Sensible casts with well definded semantics.

Ex. float -> int

float f;   void g(int x);   void g(float f); 
g(static_cast<int>(f)); // Calls the int version of g

static_cast allows us to down cast: Superclass * -> Subclass *

Book *pb = ...; 
Text *pt = static_cast<Text *>(pb); 
cout << pt->topic << endl; 

Here, pb must point at a Text, otherwise there is undefined behaviour.
The compiler trusts the client code to only run correct code.

const_cast

Allows you to remove const from a type.



void f(int *p); // Assume f doesn't modify whatever p points to
void g(const int *p) { 
    f(p); // Won't compile 
    f(const_cast<int *>(p)); // Will compile 
} 

If f changes p, then we get undefined behaviour.

reinterpret_cast

Take memory and reinterpret the bits stored there as a different type.

Turtle t; 
Student *s = reinterpret_cast<Student *>(&t); 

The bahaviour depends on the compiler and object layouts.
Casting one object to another only works if they have the same size.
This is generally unsafe.

Example: Modifying private data with reinterpret_cast.

// Class definitions
class C { 
    int x; 
    public: 
        explicit C(int xval): x{xval} {} 
        int getX const { return x; } 
}; 
 
class RogueC { 
    public: 
        int x; 
}; 
 
// Client code 
C c{10}; 
cout << c.getX() << endl; // Prints out "10" 
 
RogueC *p = reinterpret_cast<RogueC *>(&c); 
p->x = 20; 
cout << c.getX() << endl; // Prints out "20"



In the above example, we were able to modify a private field in an object by accessing it as another object that
has the sane fields which are public.

dynamic_cast

Allows checking which subclass a superclass pointer is pointing to.

Book *bp = ...; 
Text *tp = dynamic_cast<Text *>(bp); 
 
if (tp) cout << "Text" << endl; 
else cout << "Not Text" << endl; 

If bp points at a Text, then tp will point at the same Text object.
Otherwise, tp is set to nullptr

A caveat is that dynamic_cast only works if you have at least one virtual method.

Casting shared_ptrs

We can also cast from shared_ptrs to other shared_ptrs.

The following functions are available in <memory>:

static_pointer_cast
dynamic_pointer_cast
const_pointer_cast
reinterpret_pointer_cast

We can also dynamic_cast references:

Book& br = ...; 
Text& tr = dynamic_cast<Text&>(br); 

Since there is no such thing as a NULL reference, a std::bad_cast exception is thrown.

Polymorphic Assignment Problem Revisited

Text t1{...}, t2{...}; 
Book& r1 = t1; Book& r2 = t2; 
r1 = r2; 

If operator= is non-virtual, we get partial assignment.



If operator= is virtual, we get mixed assignment.

Example: Polymorphic assignment with dynamic_cast.

Text& Text::operator=(const Book& other) { 
    if (this == &other) return *this; 
    const Text& tother = dynamic_cast<const Text *>(other); 
    Book::operator=(tother); 
    topic = tother.topic; 
    return *this; 
} 

If we provide anything that isn't a Text into this operator, an exception is thrown and partial or mixed
assignment is avoided.

Is dynamic_cast good style?
With dynamic_cast, we can make decisions based on the runtile information (RTTI) of an object. For example:

void whatIsIt(shared_ptr<Book> b) { 
    if (dynamic_pointer_cast<Text>(b)) cout << "Text" << endl; 
    else if (dynamic_pointer_cast<Comic>(b)) cout << "Comic" << endl; 
    else cout << "Regular Book" << endl; 
} 

This is very tightly coupled to the Book hierarchy. If a new subclass is added, then another else if statement
must be added to the function. Furthermore, this must be repeated everywhere where this loop is used. In case
any of them is missed, then there will be a bug.

In conclusion, whether dynamic_cast is good style or not depends entirely on it's use. The use in operator=
doesn't need changing if we add more subclass types, and thus it is good style. However, the use in whatIsIt
needs to change whener the subclass structure changes and it is thus typically considered bad style. There is a
better way to implement whatIsIt, using virtual methods:

class Book { 
    ... 
    public: 
        virtual void identify() { cout << "Book" << endl; } 
}; 
 
class Text: public Book { 
    ... 
    public: 
        void identify() override { cout << "Text" << endl; } 
}; 



 
void WhatIsIt(Book *b) { 
    if (b) b->identify(); 
    else cout << "Nothing" << endl; 
} 

We can use this solution in the following cases:

1. There are a large number of subclasses of Book and we want to identify all of them with ease.
2. Book and it's subclasses have a uniform interface, and the subclass behaviour doesn't deviate too much.

Whenever we add a new subclass, we also only need to add one function (identify), and we don't need to
change the client code.

Consider the opposite case:

1. We know the subclasses in advance and we are fine with addding new subclasses requiring extensive
code changes.

2. The subclasses may not conform to a uniform interface, and each my have significantly differing
behaviour.

Consider this example:

class Enemy { 
    ... 
}; 
 
class Turtle: public Enemy { 
    void stealShell(); 
}; 
 
class Boss: public Enemy { 
    void epicBossBattle(); 
} 

Here, adding new enemines will require large changes to the codebase anyway since each ma y have unique
behaviour. In this case, using dynamic_cast isn't so bad.
Furthermore, inheritance might not be the best choice for relationship between the classes. Instead, we might
want to use std::variant.

Variants

std::variant, found in the <variant> library, acts as a type safe union.



// Type alias: Enemy now means variant<Turtle, Boss>
using Enemy = variant<Turtle, Boss>; 
 
Enemy e{Turtle{...}}; // Or {Boss{...}} 
 
// Finding the underlying type
if (holds_alternative<Boss>(e)) cout << "Boss" << endl; 
else cout << "Turtle" << endl; 
 
// Accessing value
try { 
    Turtle t = get<Turtle>(e); 
} 
catch (bad_variant_access e) { ... } 

If a variant is left uninitialized (ex. Enemy e;), it is set to the default construction of the first type in the
variant list. If the first type is not default constructable, then there will be a compilation error.

If the first type it not default constructable, then we have the following options:

1. Add a default constructor.
2. Reorder the types so that the first one has a default constructor.
3. Use std::monostate - represents empty (defined as a struct with no fields or functions)

Ex. variant<monostate, Turtle, Boss>

std::optional<T> is equivalent to variant<monostate, T>

Virtual Pointers, Vtables

How do virtual methods actually work?
Consider this code:

struct Vec { 
    int x, y; 
    void f(); 
}; 
 
struct Vec2 { 
    int x, y; 
    virtual void f(); 
}; 
 
Vec v; Vec2 w; 
cout << sizeof(int) << " " << sizeof(v) << " " << sizeof(w) << endl; 



The above code would print out 4 8 16. This shows that an integer is 4 bytes in size. A Vec object is 8 bytes in
size, which makes sense since it is twice the size of an integer and it contains 2 integers and nothing else.
However, a Vec2 object is 16 bytes in size despite it containing the exact same fields. The only difference is that
Vec2 has a virtual method while Vec does not.

w, which is a Vec2 uses up 8 bytes more space than v, which is a Vec.
If we call a regular method, then the compiler will make the correct function get called based on the static type,
which can be determined during compile time. However, virtual methods are called based on the dynamic
type, which can only be determined during runtime. Thus, the compiler needs a way to allow the object to
access it's virtual methods based on it's dynamic type during runtime.

Any object that corresponds to a class with virtual methods also contains a vptr (virtual pointer). The vptr
points to the vtable - which contains function pointers to the methods of a class. For Vec2, there is only one
such function, f.

For the above example, a Vec2 object is laid out as follows:

Vec2

vptr ---> VTable

x

y

VTable (for Vec2)

void (*pf) () ---> virtual void Vec2::f()

For another example, consider the Library (Book) code from earlier:

Book *bp = new Text / Comic / Book; // Pick any one of the classes 
bp->isHeavy(); 

The compiler generates the following instructions:

1. Follow vptr to vtable.
2. Find corresponding entry in vtable.
3. Jump to function pointer's location.

All of these happen at runtime for every virtual function call. Because of this, they are slower than non-virtual
functions.

Additionally, objects corresponding to classes with virtual functions are larger (by 8 bytes) due to the presence
of the vptr and thus consume more memory.



Classes with virtual methods always have their vptrs on the top, and then have the superclas fields, and finally
the subclass fields. This is done because for the following reasons:

It is not possible to determine where exactly the vptr is located at runtime if it is not on top of the class,
since the size of the fields (and thus the vptr location) would depend on which superclass / subclass it is.
Thus, keeping it before all the fields makes it easy to access the vptr regardless of the current dynamic
type.
By leaving the subclass objects after the superclass objects, when accessing the object as the superclass
(i.e. through a superclass pointer), the subclass fields are simply ignored and only the superclass fields
are accessed

Multiple Inheritence

Objects in C++ can inherit from multiple other objects.

Example: Multiple inheritence.

struct A { int a; }; 
struct B { int b; }; 
 
struct C: public A, public B { 
    int c; 
}; 
 
C cobj; 
cout << cobj.a << " " << cobj.b << " " << cobj.c << endl; 

Multiple inheritence is usually straightfoward, however, there are caveats when a class inherits from multiple
classes which share an ancestor class.

Example: Multiple Inheritence with a shared ancestor.

struct A { int a; }; 
struct B: public A { int b; }; 
struct C: public A { int c; }; 
 
struct D: public B, public C { 
    int d; 
}; 

This is the UML diagram for the above code:



A

B C

D

This is also known as the Deadly Diamond (of Death) because it can cause a lot of confusion.

For the above code, consider the following client code:

D d; 
cout << d.a << endl; 

While this seems like it will work, it actually causes a compilation error. This is because there is ambiguity, since
every D object contains 2 A objects, one that is part of the B object and one that is part of the C object.
Accessing the field a does not work since the compiler does not know which of the 2 a fields is supposed to be
accessed.
In order to allevaiate this, the field name can be prefixed with the superclass name:

d.B::a; // Gets the 'a' field of the superclass of B 
d.C::a; // Gets the 'a' field of the superclass of C

NOTE: This syntax of prefixing the inherited field name with the superclass name is actually valid syntax for all
inherited objects in C++. It is not used often since it unnecessarily increases the amount of code to write.

If only one copy of the shared ancestor is needed, then this can be done with virtual inheritence.

struct A { int a; }; 
struct B: public A { int b; }; 
struct C: public A { int c; }; 
 
struct D: public virtual B, public virtual C { 
    int d; 
}; 



If virtual inheritence is used for all the superclasses, then the shared ancestor is shared among the
superclasses, and thus using syntax like d.a works.

Note that the ancestor field is only shared if ALL of the superclasses that have the ancestor fields are inherited
virtually. If even one of the superclasses is inherited non-virtually, then every single superclass will have it's
own copy of the shared ancestor class.

NOTE: Since UML is meant to be language-independent, there is no specific UML syntax for virtual inheritence.
However, it is acceptable to label inheritence arrows as virtual for better understanding.

Consider this inheritence diagram of all the different C++ streams, which use virtual inheritance:

ios_base

ios

is t ream ost ream

istr ingstream i fs t ream ostr ingstream ofs t reamiostream

fs t ream str ingstream

Notice that iostream inherits from both istream and ostream. fstream and stringstream allow for
interaction with files and strings respectively, but allow for both reading from and writing to.

What about object layout?

Consider the deadly diamond example from earlier. The compiler can not simply arrange the fields class by
class like it did for single inheritence, since there will always be a class that can not be formed correctly.
Consider this example:



DD

vptr ---> VTable

A Fields

B Fields

C Fields

D Fields

Using the above layout makes it possible for the class to be represented as an A object or a B object, but not a C
object, since there will be seemingly gibberish B fields in between the A fields and the C fields. Thus, the above
method does not work.

The compiler lays out the object in the following way.

D

vptr ---> VTable

B Fields

vptr ---> VTable

C Fields

D Fields

vptr ---> VTable

A Fields

To locate the fields for a specific class, the vtable is used, which stores the distance to the fields for each
superclass' object. This is where virtual inheritence gets it's name.

Suppose we wanted an A * pointing at a D object. In this case, pointer adjustment occurs, and the pointer is
made to point at the vptr that is before the A fields. This occurs with assignment and static / dynamic casting,
but not with reinterpret_cast.

Template Functions

We have seen many functions that can operate on an arbitrary type, like make_unique, static_cast, and
dynamic_cast, but how do they work?

They are template functions. Just like templated classes and structs, templated functions can operate on any
type.

Example: Template function.



template <typename T> T min(T x, T y) { 
    return x < y ? x : y; 
} 
 
// Cleint code
min(1, 2); // Calls min<int>. The type is automaticlly deduced
min<int>(1, 2); // We can specify the type of necessary
min('a', 'c'); // Calls min<char>
min(1.5, 2.3); // Calls min<float>

The above function will work for any types that have their operator< (or operator<=>) defined, and also
have a copy / move constructor.
Just like with abstract objects, the compiler automatically generates a copy of the function for each class or
struct that it is called for.

The algorithm library

for_each

Let's consider our for_each example from earlier (during inheritence). We now have the ability to implement
it in a better way using template functions.

Example: for_each function reimplemented.

// Original function (from before)
void for_each(AbstractIterator& start, AbstractIterator& end, int (*f)(int)) 
{ 
    while (start != end) { 
        f(*start); 
        ++start; 
    } 
} 
 
// Reimplemented version (using template functions)
template <typename Iter, typename Fn> void for_each(Iter start, Iter end, Fn 
f) { 
    while (start != end) { 
        f(*start); 
        ++start; 
    } 
} 
 
// Client code
void print(int n) { cout << n << endl; } 
int a[5] = {1, 2, 3, 4, 5}; 



for_each(a, a + 5, print); 
// Prints out 1 2 3 4 5 (in separate lines)

The second function does not require creating and inheriting from an AbstractIterator type, and works
with the iterators provided for the inbuilt objects and structures as well as pointers. It works as long as Iter
has ++, !=, and * operators defined, and the * operator's return type matches Fn's argumenttype.

The for_each function has already been implemented and is part of the base language.

It can be found in the <algorithm> library. The library also has many other useful functions. Some other
functions are described below.

find

Finds an item in between 2 iterators.

template <typename Iter, typename T> Iter find(Iter start, Iter finish, const 
T& val) { 
    // Searches in [Start, Finish) for an Iter that when dereferenced == val. 
    // Returns either an iterator to the first that matched, or finish, if 
not found 
} 

Allows for easily searching through any iterable for a specific value. Works as long as Iter has ++, !=, and *
operators defined, and the * operator's return type it T.

count

Similar to find, but rather than finding the first occurrence, returns the number of occurrences of the value.

template <typename Iter, typename T> int count (Iter start, Iter finish, 
const T& val) { 
    // Searches in [Start, Finish) for Iters that when dereferenced == val. 
    // Increments the return value each time such a value is found 
} 

count_if

Similar to count, but rather than comparing values, count_if applies a function (that returns a boolean) to
the value in each location of the container, and counts the number of such locations cause the function to
evaluate to true.



template <typename Iter, typename F> int count_if(Iter start, Iter finish, Fn 
f) { 
    // Searches in [Start, Finish) for Iters that when dereferenced and 
passed into f, return true. 
    // Increments the return value each time such a value is found 
} 

copy

Copies values from one container to another.

template <typename InIter, typename OutIter> OutIter copy(InIter start, 
InIter finish, OutIter result) { 
    // Copies the values from [Start, Finish) and increments the result each 
time 
    // Returns the last location of result 
} 
 
// Example client code
vector v{1, 2, 3, 4, 5, 6, 7}; 
vector<int>w(4); // w = {0, 0, 0, 0} 
copy(v.begin() + 1, v.begin() + 5, w.begin()); 
// w = {2, 3, 4, 5}

The contents of the original container are not modified, and the copy container is used wherever there are
objects.

copy requires that both InIter and OutIter have all the iterator operators defined, both are iterators of
containers of the same type (or the destination type can be constructed from the source type), and that if the
iterable stores objects, they have a copy contructor. Furthermore, copy assumes that the destination container
has enough space to copy and store the values. It is up to the user to verify that this is in fact the case.

transform

This is the C++ equivalent of the map function from Python or Racket.

template <typename InIter, typename OutIter, typename Fn> OutIter 
transform(InIter start, InIter finish, OutIter result, Fn f) { 
    while (start != finish) { 
        *result = f(*start); 
        ++start; ++result; 
    } 
} 
 



// Client code
int add1(int n) { return n + 1; } 
vector<int> v{2, 3, 5, 7, 11}; 
vector<int> w(v.size()); 
transform(v.begin(), v.end(), w.begin(), add1); 
// w = {3, 4, 6, 8, 12}

transform has almost identical requirements to copy, with the only difference being that there is no
constructor requirements, and the Fn should take one input value of the same type as the source container,
and the destination container be of the same type as (or implicitly constructable from) the return value of Fn.

Functors

In all the previous examples, we saw Iter requires ++, !=, *.

For Fn, the only requirements are that the argument and return types must match and that f(*start) must
be valid syntax.

While the second requirement is usually only valis for functions, we can also overload the operator() of an
object, which makes a function object, of functor.

Example: A functor.

class Plus { 
    int m; 
    public: 
        Plus(int m): m{m} {} 
        int operator() (int n) { return n + m; } 
}; 
 
// Client code 
Plus p{5}; 
cout << p(10) << endl; // 15 
 
vector<int> v{2, 3, 5, 7, 11}; 
vector<int> w(v.size()); 
transform(v.begin(), v.end(), w.begin(), p); 
// w = {7, 8, 10, 12, 16}

While this just seems like a more complicated way to define something that behaves like a function, functors
also have the ability to store (and modify) their state. Furthermore, a user can instantiate multiple objects with
different values to create functors that behave differently.

Example: Functor that stores and uses state.



class IncreasingPlus { 
    int m = 0; 
    public: 
        int operator() (int n) { n + (m++); } 
}; 
 
// Client code 
IncreasingPlus ip; 
cout << ip(5) << ip(5) << ip(5) << endl; // 5, 6, 7 
 
vector v{2, 3, 5, 7, 11}; 
vector w(v.size()); 
transform(v.begin(), v.end(), w.begin(), IncreasingPlus{}); 
// w = {2, 4, 7, 10, 15}

Lambdas

Consider that we have a vector of ints, and want to find out how many are even?
We can use count_if

bool even (int n) { return n % 2 == 0; } 
vector<int> v{...}; 
int x = count_if(v.begin(), v.end(), even); 

While this works, it is pointless to define a function if we are only going to use it in one place. It makes more
sense to define a function for one-time use.
In CS135, we would use a lambda instead of a full function. We can do the same here.

vector<int> v{...}; 
int x = count_if(v.begin(), v.end(), [](int n) { return n % 2 == 0; }); 

This syntax uses less space than defining a full function. Notice that there is no mention of the return value,
and it is automatically deduced. The general syntax of a lambda is as follows:

[](<Input values>) { Code } 

Notice that unlike lambdas in other languages like Python or Racket, C++ lambdas can have multiple lines of
code in them, and also explicitly need a return statement.

Advanced Iterator Uses



C++ Iterators are a very powerful concept, and they can be applied beyond just the notion of containers.
Many such functions are available in the <iterator> module.

ostream_iterator

The ostream_iterator acts as a container for data, which takes all the values sent to it and prints them to
stdout.

Example: Printing out values using an ostream_iterator.

vector<int> v{1, 2, 3, 4, 5}; 
ostream_iterator<int>out{cout, ", "}; // ostream and delimiter 
copy(v.begin(), v.end(), out); // Prints 1, 2, 3, 4, 5

This is a much simpler method of printing out the contents of a container rather than iterating through it and
calling cout for each one.

back_inserter

Recall the copy requires that there is enough space in the destination container to copy the data into. With
back_inderter, it is possible to automatically expand the destination container while copying data over into
it.

Example: Using back_inserter.

vector v{1, 2, 3}; 
vector w{4, 5, 6}; 
copy(v.begin(), v.end(), back_inserter(w)); 
// w = {4, 5, 6, 1, 2, 3}

When using the back_inserter iterators, assignment automatically calls the push_back function each time,
which allocates space (if necessary) and copies the contents over.

Advice: Use functions from the <algorithm> library whenever possible, since it can greatly simplify code and
reduce bugs.

Ranges

Recall the vector<T>::erase function. It takes in am iterator, erases the value at the iterator's location,
shaifs down (moves all the values after the deleted value one slot to fill up the freed space), and returns an
iterator to the new element in that location. All of this happens in $O(n)$ time.

This is fine if we are only erasing one element. However, what if we wanted to erase k elements from a
container?



If we were to use erase in a loop, it would run in $O(n * k)$ time. This is quite inefficient, and a better solution
is necessary for sunc cases.

Instead, we can use the ranged version of erase.

Example: Ranged version of the erase function.

// Client code for ranged erase 
erase(Iter start, Iter finish); 
// Erases contents of container from [Start, Finish)
// Only shifts values over once, regardless of the number of items deleted.

A range is a collection of 2 iterators.

Consider that we have a vector of integers, and we want take only the odd numbers and square them.

Example: Filter odd integers and square them (using lambdas and <algorithm> functions).

auto odd = [](int n) { return n % 2 != 0; } 
auto sqr = [](int n) { return n * n; } 
vector<int> v{...}; 
vector<int> w, x; 
 
copy_if(v.begin(), v.end(), back_inserter(w), odd); 
transform(w.begin(), w.end(), back_insertr(x), sqr); 

This implementation works fine, but it has some problems:

1. Functions are on separate lines rather than composed.
2. w is only used for temporary storage.

These can be fixed in the following ways:

1. Fixed if copy_if and transform return ranges instead of ending iterator.
2. Solved using lazy evaluation (values are only calculated when they are accessed).

Example: Filter odd integers and square them (using ranges).

#include <range>
vector<int> v{1, 2, 3, 4, 5}; 
 
auto X = ranges::views::transform(ranges::views::filter(v.odd), sqr); 
// X will apply filter and then sqr when you iterate.



These also have versions that take a function and return a function object to take the range.

Example: Filter odd integers and square them (using range functions).

auto f = filter(add); 
auto g = transform(sqr); 
 
auto X = g(f(R)); // Where R is a range

We can actually simplify this even further.
operator| is defined such that R | f == f(R)

Example: Filter odd integers and square them (using operator|).

auto X = v | filter(odd) | transform(sqr); 

End of CS 246 course content.

Conclusion

What is CS 246 about?
This is not a course about C++.

Low level thinking: What does the compiler do? Semantics of copy/move
High level thinking: Simplicity vs abstraction, design principles

This course is about adding a new programming paradigm to your toolkit.

Every programming paradigm (so far, we know about functional, imperative, and object-oriented) has it's own
pros and cons.
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Course Content Review

Streams

Streams are a form of abstraction, and provide an interface to perform different functionality related to
input/output.
There are two basic types of streams:

1. istream (input stream): provides >> as an interface to "read from"
2. ostream (output stream): provides << as an interface to "write to"

These basic streams are abstracted away to provide various other streams for different use cases:
1. cin (istream) and cout (ostream) for reading from and writing to stdin and stdout

respectively. There is also cerr which functions like cin but writes to stderr. Found in
<iostream> library.

2. ifstream (istream) and ofstream (ostream) for reading from and writing to a file. Found in
<fstream> library.

3. istringstream (istream) and ostringstream (ostream) for reading from and writing to a
string as though it is a file or IO stream. There is also stringstream that does both. Found in the
<stringstream> library.

References

A pointer-like type that is new to C++.
Allows to alias (reference) one variable using another, such that changes to one will be reflected in the
other. Can be passed into functions to create parameters that modify the original value.
They behave like constant pointers with automatic dereferencing.
The method of implementation depends on the compiler and optimization level. The reference is either
replaced with the variable it is referencing at compile time, or a pointer is used which is automatically
dereferenced.
There are 2 types of references:

Lvalue references, for values that always have a defined region in memory to be stored in.
Syntax: int& a = b; (provided b is an int).
Rvalue references, for values that are not necessarily stored in a memory region (temporary
values).
Syntax: int&& x = 5; (5 here is not a variable and thus isn't stored in a defined memory region).

References have some limitations - the following can not be done with refreences:
Can not be left uninitialized (no NULL reference).
Can not assign a temporary value (Rvalue) to an Lvalue reference.
Lvalue references can only be assigned to variables. NOTHING else.
int& z = x + y; or int& z = f(); are invalid.
Reference to a pointer is allowed, but pointer to a reference is NOT allowed.
Can not create a reference of a reference.
Can not create an array of references.



C++ Dynamic Memory

Similar to how C uses malloc and free for allocating and freeing heap memory, C++ uses new and
delete.

<Type>* p = new <Type>; allocates space for a new object of type <Type> to be stored in the
heap.
delete p; frees the space pointed to by p. Here, p must be a pointer to heap memory.

new and delete are type-safe, and ensure that the allocated memory is used by the correct type.
Memory that has been allocated with malloc and memory that has been allocated with new are
incompatible with each others' freeing functions and free and delete need to be used respectively to
free the memory.
C++ does not have an equivalent to realloc, and thus new and free need to be used.
For allocating arrays, the commands new[] and delete[] are used. They function similarly to new and
delete, but allocate space for multiple objects.

<Type>* arr = new <Type>[k], where k is an integer, allocates an array of <Type>s of size k.
delete[] arr deletes arr, provided that it was allocated with new[].
Memory allocated with new must be freed with delete and memory allocated with new[] must
be freed with delete[].

new and new[] can also be used to allocate space for custom classes and structs.

Passing / Returning Values

There are 4 main ways to pass data into a function (consider struct ReallyBig {...};):
Pass by value: Very simple but extremely slow since all data needs to be copied.
Useful for small arguments, or if a temporary version of the variable is needed.
void f(ReallyBig rb);
Pass by pointer: Fast, but can be confusing to use, and changes are reflected.
Useful in cases where nullptr might need to be passed in.
void g(ReallyBig* rb);
Pass by reference: Fast (similar to pointer), changes are reflected.
Usually preferred over pass by pointer, but can not pass nullptr.
void h(ReallyBig& rb);
Pass by const reference: Fast, no copies, easy to reason, also supports Lvalues.
Go to method if the variable does not need to be changed.
void i(const ReallyBig& rb);

There are $n$ different ways to return data from a function:
Return by value: The value is copied from the function's stack frame to the caller's stack frame,
and it is thus slow.
Recommended in most scenarios since it is the easiest to reason about.
Return by pointer: Much faster since data doesn't need to be copied, however it only works with
heap-allocated memory, and the caller has to free the memory afterwards.
Return by reference is not possible, since it results in a dangling reference, as the original variable
that is being referenced will be deleted when the function finishes execution.



Objects

Just like in C, C++ has structs. These can store different values in their fields.

Ctors, Dtors, Big 5

UML

Iterator Pattern

Decorator Pattern

Observer Pattern

Factory Method Pattern

Template Method Pattern

Exception Handling

Smart Pointers

MVC

Casting


